• Title/Summary/Keyword: site coefficient

Search Result 715, Processing Time 0.032 seconds

Analysis of a Pollutant Flow Tracer Test in River using Radioactive Isotope (하천에서 추적자를 이용한 오염물질 거동분석)

  • Kim, Ki-Chul;Lee, Jong-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.400-406
    • /
    • 2009
  • In this study, in order to find the movement of polluted substance that is flown into the river and the characteristics of dispersion, the experiment that used the RI (Radioactive Isotope) tracer in the river was undertaken, and by using the experiment result, the figure modelling was undertaken to analyze the general type of pollutant dispersion. In addition, in order to calculate more accurate dispersion range and moving time, the experiment was done in about 2km from the measuring points of Namdae Stream around the Yongdam Dam of the upper Geum River to the lower stream. In order to find out the flow of river and dispersion of polluted substance, RMA (Resource Modeling Associates)-2 and RMA-4 program are used in study. The site experiment using the RI was implemented for the experiment in the applied area and the same area, and the distance between each zone was set for 1km with the slight difference for site situation and measured the density date of one second distance through the NaI apparatus to measure the density data of one second interval. On the basis of this measured data, it is compared and analyzed with the result of figure copy of the models to make the comparison and analysis of density distribution following the change in expansion coefficient that makes great influence on expansion range and dispersion in natural rivers.

3D-QSAR Studies on Chemical Features of 3-(benzo[d]oxazol-2-yl)pyridine-2-amines in the External Region of c-Met Active Site

  • Lee, Joo Yun;Lee, Kwangho;Kim, Hyoung Rae;Chae, Chong Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3553-3558
    • /
    • 2013
  • The three dimensional-quantitative structure activity relationship (3D-QSAR) studies on chemical features of pyridine-2-amines in the external region of c-Met active site (ER chemical features of pyridine-2-amines) were conducted by docking, comparative molecular field analysis (CoMFA), and topomer CoMFA methods. The CoMFA model obtained the partial least-squares (PLS) statistical results, cross-validated correlation coefficient ($q^2$) of 0.703, non cross-validated correlation coefficient ($r^2$) of 0.947 with standard error of estimate (SEE) of 0.23 and the topomer CoMFA obtained $q^2$ of 0.803, $r^2$ of 0.940, and SEE of 0.24. Further, the test set was applied to validate predictive abilities of models, where the predictive $r^2$ ($r{^2}_{pred}$) for CoMFA and topomer CoMFA models were 0.746 and 0.608, respectively. Each contribution of ER chemical features of pyridine-2-amines to the inhibitory potency showed correlation coefficients, $r^2$ of 0.670 and 0.913 for two core parts, 3-(benzo[d]oxazol-2-yl)pyridine-2-amine and 3-(1-(2,6-dichloro-3-fluorophenyl)ethoxy) pyridine-2-amine, respectively, with corresponding experimental $pIC_{50}$.

Comparison of Tn-situ Characteristics of Soft Deposits Using Piezocone and Dilatometer (피에조 콘과 딜라토메터 시험을 이용한 연약지반의 현장특성 비교)

  • 김영상;이승래;김동수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.45-56
    • /
    • 1998
  • In order to select a proper ground improvement technology and to assess the quality and rate of improvement in the soft deposits. it is essential to characterize in-situ properties of the soft marine clay layer that may have many thin silt or sand seams. In this paper, both piezocone and flat dilatometer tests were performed to characterize in situ properties of a marine clay. Both tests provided quite similar site classifications, and in both tests the penetration pore water pressure was the better indicator for the classification of marine clay layer, especially in which sand or silt seams are frequently interbedded. Undrained strengths determined by both the cone tip resistance and the excess pore water pressure measured from piezocone were very similar in clayey soil layers. And the untrained strength determined by dilatometer had an approximately average value of undiained strengths obtained from piezocone. In addition, the theoretical time factor that can consider pore pressure dissipation effect during cone penetration may provide a reliable estimation of the coefficient of consolidation, especially for a coastal site which includes many silt or sand fractions or seams.

  • PDF

Estimation of creep coefficient in reinforced concrete beam (RC 빔 부재에서 크리프 계수 추정)

  • Park, Jong-Bum;Cho, Jae-Yeol;Park, Bong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.245-248
    • /
    • 2008
  • Concrete structures show time-dependent behavior due to creep and shrinkage of concrete and the uncertainties of creep and shrinkage are very huge. To reduce uncertainties of creep and shrinkage, it is substantially necessary to perform the long-term creep and shrinkage tests, but actual construction process doesn't allow it due to the limited time. Even though the tests are performed in laboratory, the values obtained from the tests could be different from the actual values in construction site because of the different environment between the laboratory and construction site and the model uncertainty itself. It is difficult to predict the long-term behaviors of concrete structures properly if the assumed creep coefficient obtained from Codes or the results of experiments is different from the real characteristics of concrete creep. In this study, for predicting the long-term behavior, the creep coefficients in reinforced concrete beams are estimated using creep sensitivity analysis from the measured deflections with time. And estimated creep coefficients using creep models of ACI Committee 209 and CEB-FIP MC90 are compared.

  • PDF

The Application of InSAR Signature Time Series for Landcover Classification (InSAR Signature 시계열 분석을 통한 토지피복분류)

  • Yun, Hye Won;Choi, Yun Soo;Yoon, Ha Su;Ko, Jong Sik;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Considering the wide coverage, the transparency from climate condition, Interferometric Synthetic Aperture Radar (InSAR) possesses a great potential for the landcover classification as shown in many precedent researches. In addition to the merits of InSAR products for the landcover classification, the time series analysis of InSAR pairs can provide a highly reliable basis to interpret landcover. We applied such idea with the test site in Mountain Baekdu located on the border between North Korea and China. Since it is recently noted as the potential volcanic activation site, the landcover especially the vegetation distribution information is highly essential to validate the reliability of Differential Interferometric Synthetic Aperture Radar (DInSAR) over Mt. Baekdu. The algorithms combining the auxiliary information from Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the phase coherence and backscatter coefficient of Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) was established. The results using InSAR signatures from two polarization modes of ALOS PALSAR showed high reliability for mining landcover and spatial distribution.

Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project (국내 이산화탄소 지중격리저장 실증실험 후보부지의 역학적 안정성 평가 기초해석)

  • Kim, A-Ram;Kim, Hyung-Mok;Kim, Hyun-Woo;Shinn, Young-Jae
    • Tunnel and Underground Space
    • /
    • v.27 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • For a successful performance of Carbon Capture Sequestration (CCS) projects, appropriate injection conditions should be designed to be optimized for site specific geological conditions. In this study, we built a simple 2-dimensional analysis model, based on the geology of Jang-gi basin which is one of the potential sites of domestic CCS projects. We evaluated the impact of initial stress conditions and injection rate through coupled TOUGH-FLAC simulator. From the preliminary analysis, we constructed risk scenarios with the higher potential of shear slip and performed scenario analysis. Our analysis showed that normal stress regime produced the highest potential of shear slip and stepwise increasing injection rate scenario resulted in much larger pore pressure build up and consequent higher potential of the shear slip, which was evaluated using a mobilized friction coefficient.

Joint distribution of wind speed and direction in the context of field measurement

  • Wang, Hao;Tao, Tianyou;Wu, Teng;Mao, Jianxiao;Li, Aiqun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.701-718
    • /
    • 2015
  • The joint distribution of wind speed and wind direction at a bridge site is vital to the estimation of the basic wind speed, and hence to the wind-induced vibration analysis of long-span bridges. Instead of the conventional way relying on the weather stations, this study proposed an alternate approach to obtain the original records of wind speed and the corresponding directions based on field measurement supported by the Structural Health Monitoring System (SHMS). Specifically, SHMS of Sutong Cable-stayed Bridge (SCB) is utilized to study the basic wind speed with directional information. Four anemometers are installed in the SHMS of SCB: upstream and downstream of the main deck center, top of the north and south tower respectively. Using the recorded wind data from SHMS, the joint distribution of wind speed and direction is investigated based on statistical methods, and then the basic wind speeds in 10-year and 100-year recurrence intervals at these four key positions are calculated. Analytical results verify the reliability of the recorded wind data from SHMS, and indicate that the joint probability model for the extreme wind speed at SCB site fits well with the Weibull model. It is shown that the calculated basic wind speed is reduced by considering the influence of wind direction. Compared to the design basic wind speed in the Specification of China, basic wind speed considering the influence of direction or not is much smaller, indicating a high safety coefficient in the design of SCB. The results obtained in this study can provide not only references for further wind-resistance research of SCB, but also improve the understanding of the safety coefficient for wind-resistance design of other engineering structures in the similar area.

A Study on the Characteristics of Alluvial Clay in Yangsan-Mulgum (양산-물금 충적점토의 토질특성에 관한 연구)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.1
    • /
    • pp.102-111
    • /
    • 1997
  • Experiments both in laboratory and field were performed to compare and analyze the characteristics of alluvial clay. The alluvial clay was sampled in test site in which large-scaled tests for the part of the site are under process to suggest the rational method for alluvial clay and the criterion for ground settlement monitoring system. The followings were observed through the experiments : 1. Natural water content, plastic limit, and liquid limit of alluvial clay composed of highly fine grains were 40~80%, 10~20%, and 30~55%, respectively. The values of these properties were relatively small at the ground surface, while the values showed maximum at G.L.- l0m and gradually decreased below the level. 2. Shear strength of alluvial clay was proportionally increased to the depth. Unconfined and triaxial compressive strengths were 0.2~0.6kgf/$cm^2$ and 0.1~0.3kgf/$cm^2$, respectively. 3. Compression index and secondary compression index showed maximum values at G.L.-l0m and gradually decreased below the level. The value of consolidation coefficient was relatively large at the ground surface, constant with decreasing the depth, and incresed when G.L. was below -20m. 4. Piezocone test appeared that alluvial clay with N value of 2~4 was uniformly distributed with 20~ 30m thickness from the ground surface, sand seam was nonuniformly distributed, and penetration pore pressure was 0.8 ~ 1 times of the hydrostatic pressure. Undrained shear strength and consolidation coefficient were 0.04 ~ 0.76kgf / $cm^2$ and $2.88{\times} 10{^-4}~1.3{\times} 10{^-2} cm^2/s$ respectively.

  • PDF

Annual and spatial variabilities in the acorn production of Quercus mongolica

  • Noh, Jaesang;Kim, Youngjin;Lee, Jongsung;Cho, Soyeon;Choung, Yeonsook
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.229-240
    • /
    • 2020
  • Background: Genus Quercus is a successful group that has occupied the largest area of forest around the world including South Korea. The acorns are an important food source for both wild animals and humans. Although the reproductive characteristics of this genus are highly variable, it had been rarely studied in South Korea. Therefore, in Seoraksan and Odaesan National Parks (i) we measured the acorn production of Quercus mongolica, an overwhelmingly dominant species in South Korea, for 3 years (2017-2019), (ii) evaluated the spatial-temporal variation of acorn production, and (iii) analyzed the effects of oak- and site-related variables on the acorn production. Results: The annual acorn production of Q. mongolica increased 36 times from 1.2 g m-2 in 2017 to 43.2 g m-2 in 2018, and decreased to 16.7 g m-2 in 2019, resulting in an annual coefficient of variation of 104%. The coefficient of spatial variation was high and reached a maximum of 142%, and the tree size was the greatest influencing factor. That is, with an increase in tree size, acorn production increased significantly (2018 F = 16.3, p < 0.001; 2019 F = 8.2, p < 0.01). Elevation and slope also significantly affected the production in 2019. However, since elevation and tree size showed a positive correlation (r = 0.517, p < 0.001), the increase in acorn production with increasing elevation was possibly due to the effect of tree size. The acorn production of Odaesan for 3 years was 2.2 times greater than that of Seoraksan. This was presumed that there are more distribution of thick oak trees and more favorable site conditions such as deep soil A-layer depth, high organic matter, and slower slopes. Conclusion: As reported for other species of the genus Quercus, the acorn production of Q. mongolica showed large spatial and annual variations. The temporal variability was presumed to be a weather-influenced masting, while the spatial variability was mainly caused by oak tree size.

Sorption of Eu on MX-80 Bentonite in Na-Ca-Cl Brine Solutions

  • Yang, Jieci;Racette, Joshua;Garcia, Fabiola Guido;Nagasaki, Shinya;Yang, Tammy
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.151-160
    • /
    • 2022
  • The sorption of Eu on MX-80 bentonite in Na-Ca-Cl solutions is investigated at a molal proton concentration (pHm) range of 3 to 10 and an ionic strength (I) range of 0.1 to 6 m (mol·kgw-1). The sorption equilibrium of Eu on MX-80 is achieved within 14 to 21 d at I = 0.1 and 6 m. The sorption distribution coefficient (Kd) values of Eu for MX-80 increase as pHm increases from 3 to 6 for all I values, and they are independent of pHm between 8 and 10 at I ≥ 0.5 m. Meanwhile, at I = 0.1 m, the Kd value at pHm = 10 is slightly lower than those at pHm = 8 and 9. The Kd values are not affected by the I values between 0.5 m and 6 m, whereas the Kd value at I = 0.1 m is greater than those at I ≥ 0.5 m, except at pHm = 10. A two-site protolysis nonelectrostatic surface complexation and cation exchange sorption model is applied to the Eu sorption data for I ≤ 4 m, and the equilibrium constants of the sorption reactions are estimated.