• Title/Summary/Keyword: site amplification effect

Search Result 62, Processing Time 0.028 seconds

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.

Analysis of Amplification Factor Spectrum Using Strong Ground Motions Compatible to the Domestic Seismotectonic Characteristics (유사 강지진동을 이용한 수평 및 수직지반응답의 Amplification Factor 스펙트럼 분석)

  • 김준경;박창업;조봉곤;지헌철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.25-29
    • /
    • 1997
  • Amplication factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum. The observed ground motions from the Miramichi, Nohanni, Sagueray and New Madrid Earthquake (19 vertical components, 36 horizontal components), which are estimated to represent domestic seismotectonic characteristics such as seismic sources, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplication factors have been calculated by comparing the observed peak ground motions with results form responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceed those of Standard Response Spectrum of relatively higher frequencies. The result implles that the characteristics of the seismic strong ground motion, which may represent the domestic seismotectonic characteristics differ from of standard Response Spectrum, especillay of higher frequencies.

  • PDF

Evaluation of Stiffness Profile for Site Response Analysis of Highly-Elevated Earth-fill Embankment (고성토 제방의 부지응답해석을 위한 전단강성 평가)

  • Joh, Sung-Ho;Rahman, Norinah Abd;Hassanul, Raja
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.872-879
    • /
    • 2010
  • High rock-fill embankment is relatively flexible, which makes crest of embankment subject to excessive amplification in displacement due to earthquake loading. To overcome problems related with site response in high embankment, it is essential to evaluate shear-wave velocity profile of the embankment with improved accuracy and reliability. In this aspect, an experimental research was performed to answer how to perform surface-wave tests and to analyze measurements at an embankment site with a sloping ground surface. Unlike flat ground surface, sloping ground may hamper and slow down propagation of surface waves due to multiple reflections and refractions in embankment. To figure out this reasoning for the effect of multiple reflections and refractions due to sloping surface, surface wave tests were performed at a reservoir embankment of Chung-Song in North KyeongSang Province. Parameters involved in surface wave tests at non-flat surface, including source directionality, geometry-related constraint and frequency components in source function, were investigated using field measurements.

  • PDF

Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction (구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Influence of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines

  • Bi, Kaiming;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.663-680
    • /
    • 2012
  • Previous major earthquakes revealed that most damage of the buried segmented pipelines occurs at the joints of the pipelines. It has been proven that the differential motions between the pipe segments are one of the primary reasons that results in the damage (Zerva et al. 1986, O'Roueke and Liu 1999). This paper studies the combined influences of ground motion spatial variations and local soil conditions on the seismic responses of buried segmented pipelines. The heterogeneous soil deposits surrounding the pipelines are assumed resting on an elastic half-space (base rock). The spatially varying base rock motions are modelled by the filtered Tajimi-Kanai power spectral density function and an empirical coherency loss function. Local site amplification effect is derived based on the one-dimensional wave propagation theory by assuming the base rock motions consist of out-of-plane SH wave or combined in-plane P and SV waves propagating into the site with an assumed incident angle. The differential axial and lateral displacements between the pipeline segments are stochastically formulated in the frequency domain. The influences of ground motion spatial variations, local soil conditions, wave incident angle and stiffness of the joint are investigated in detail. Numerical results show that ground motion spatial variations and local soil conditions can significantly influence the differential displacements between the pipeline segments.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

Classification of Seismic Stations Based on the Simultaneous Inversion Result of the Ground-motion Model Parameters (지진동모델 파라미터 동시역산을 이용한 지진관측소 분류)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.183-190
    • /
    • 2007
  • The site effects of seismic stations were evaluated by conducting a simultaneous inversion of the stochastic point-source ground-motion model (STGM model; Boore, 2003) parameters based on the accumulated dataset of horizontal shear-wave Fourier spectra. A model parameter $K_0$ and frequency-dependent site amplification function A(f) were used to express the site effects. Once after a H/V ratio of the Fourier spectra was used as an initial estimate of A(f) for the inversion, the final A(f) which is considered to be the result of combined effect of the crustal amplification and loca lsite effects was calculated by averaging the log residuals at the site from the inversion and adding the mean log residual to the H/V ratio. The seismic stations were classified into five classes according to $logA_{1-10}^{max}$(f), the maximum level of the site amplification function in the range of 1 Hz < f < 10 Hz, i.e., A: $logA_{1-10}^{max}$(f) < 0.2, B: 0.2 $\leq$ $logA_{1-10}^{max}$(f) < 0.4, C: 0.4 $\leq$ $logA_{1-10}^{max}$(f) < 0.6, D: 0.6 $\leq$ $logA_{1-10}^{max}$(f) < 0.8, E: 0.8 $\leq$ $logA_{1-10}^{max}$(f). Implication of the classified result was supported by observing a shift of the dominant frequency of average A(f) for each classified stations as the class changes. Change of site classes after moving seismic stations to a better site condition was successfully described by the result of the station classification. In addition, the observed PGA (Peak Ground Acceleration)-values for two recent moderate earthquakes were well classified according to the proposed station classes.

The Effect of the Shear Wave Velocity of a Seismic Control Point on Site Response Analysis (기반암 전단파속도의 부지응답특성 영향평가)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • In order to evaluate the effect of shear wave velocity of a seismic control point on site response analysis, one-dimensional equivalent linear site response analysis were performed on the model soil profile based on the results of a detailed site investigation of sedimentary layers at Incheon and Busan. The results of the analysis show that an increase of shear wave velocity on the seismic control point (base rock) results in an increase of acceleration in the soil layers. This was mainly due to an unclear definition of the seismic control point. For this reason, the Korean Seismic Design Standard requires a specific definition of the seismic control point, including spatial conditions and soil properties, similar to the MCE (Maximum Considered Earthquake) in FEMA 369.

Appropriate Input Earthquake Motion for the Verification of Seismic Response Analysis by Geotechnical Dynamic Centrifuge Test (동적원심모형 시험을 이용한 부지응답해석 검증시 입력 지진의 결정)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.209-217
    • /
    • 2013
  • In order to verify the reliability of numerical site response analysis program, both soil free-field and base rock input motions should be provided. Beside the field earthquake motion records, the most effective testing method for obtaining the above motions is the dynamic geotechnical centrifuge test. However, need is to verify if the motion recorded at the base of the soil model container in the centrifuge facility is the true base rock input motion or not. In this paper, the appropriate input motion measurement method for the verification of seismic response analysis is examined by dynamic geotechnical centrifuge test and using three-dimensional finite difference analysis results. From the results, it appears that the ESB (equivalent shear beam) model container distorts downward the propagating wave with larger magnitude of centrifugal acceleration and base rock input motion. Thus, the distortion makes the measurement of the base rock outcrop motion difficult which is essential for extracting the base rock incident motion. However, the base rock outcrop motion generated by using deconvolution method is free from the distortion effect of centrifugal acceleration.

Application of Soil Factor on the Aseismic Design (내진 설계시 지반계수의 합리적 적용에 대한 연구)

  • 이인모;임종석
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.7-20
    • /
    • 1993
  • The first Korean earthquake resistant design code was enacted in 1988. In the code, the soil factor which takes into account both the soil amplification factor and the soil -structare interaction effect is divided into three groups : soil factor, 5 : 1.0, 1.2 and 1.5. In order to assist in choosing the soil factors appropriately in the earthquake resistant design, the local site effects on the based shear force induced by earthquakes are considered in depth for typical soil conditions in Korea. The depth of the alluvial and/or weathered zone is usually not deep and the fresh rock is found at depth shallower than 20 meters, and even at about 10 meters around Seoul. One dimensional wave propagation theory and the elastic half space method are used to obtain the soil -structure interaction effect as well as the soil amplification effect. The kinematic interaction effect due to scattering of waves by pile foundation is also considered. Finally, the soil factor is recommended for each soil condition from loose state to dense, and also from shallow soil depth to deep, so that the designer can choose the factor with-out difficulty.

  • PDF