• Title/Summary/Keyword: sirtinol

Search Result 7, Processing Time 0.015 seconds

Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein

  • Joo, So-Young;Aung, Ja Moon;Shin, Minsang;Moon, Eun-Kyung;Kong, Hyun-Hee;Goo, Youn-Kyoung;Chung, Dong-Il;Hong, Yeonchul
    • Parasites, Hosts and Diseases
    • /
    • v.60 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The encystation of Acanthamoeba leads to the development of metabolically inactive and dormant cysts from vegetative trophozoites under unfavorable conditions. These cysts are highly resistant to anti-Acanthamoeba drugs and biocides. Therefore, the inhibition of encystation would be more effective in treating Acanthamoeba infection. In our previous study, a sirtuin family protein-Acanthamoeba silent-information regulator 2-like protein (AcSir2)-was identified, and its expression was discovered to be critical for Acanthamoeba castellanii proliferation and encystation. In this study, to develop Acanthamoeba sirtuin inhibitors, we examine the effects of sirtinol, a sirtuin inhibitor, on trophozoite growth and encystation. Sirtinol inhibited A. castellanii trophozoites proliferation (IC50=61.24 µM). The encystation rate of cells treated with sirtinol significantly decreased to 39.8% (200 µM sirtinol) after 24 hr of incubation compared to controls. In AcSir2-overexpressing cells, the transcriptional level of cyst-specific cysteine protease (CSCP), an Acanthamoeba cysteine protease involved in the encysting process, was 11.6- and 88.6-fold higher at 48 and 72 hr after induction of encystation compared to control. However, sirtinol suppresses CSCP transcription, resulting that the undegraded organelles and large molecules remained in sirtinol-treated cells during encystation. These results indicated that sirtinol sufficiently inhibited trophozoite proliferation and encystation, and can be used to treat Acanthamoeba infections.

A Study on the Effects of Sirtuin 1 on Dendritic Outgrowth and Spine Formation and Mechanism in Neuronal Cells (신경세포에서 sirtuin 1이 수상돌기 성장과 가시형성에 미치는 영향 및 기전에 관한 연구)

  • Seo, Mi Kyoung;Kim, Hye Kyeong;Baek, Song Young;Lee, Jung Goo;Urm, Sang-Hwa;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.806-817
    • /
    • 2021
  • Increasing evidence suggests that depression is associated with impairments in neural plasticity. Sirtuin 1 plays an important role in neural plasticity, and the activation of mechanistic target of rapamycin complex 1 (mTORC1) signaling is known to improve neural plasticity. In this study, we aimed to determine whether sirtuin 1 affects dendrite outgrowth and spine formation through mTORC1 signaling. Resveratrol (sirtuin 1 activator; 1 and 10 μM) and sirtinol (sirtuin 1 inhibitor; 1 and 10 μM) were treated in primary cortical culture with and without dexamethasone (500 μM). Levels of sirtuin 1, phospho-extracellular signal regulated protein kinase 1/2 (ERK1/2), phospho-mTORC1, and phospho-p70 ribosomal protein S6 kinase (p70S6K) were evaluated using Western blot analysis. Dendritic outgrowth and spine density were assessed using immunostaining. Resveratrol significantly increased levels of sirtuin 1 expression and phosphorylation of ERK1/2 (a downstream target of sirtuin 1), mTORC1, and p70S6K (a downstream target of mTORC1) in a concentration-dependent manner under dexamethasone conditions. Resveratrol also significantly increased dendritic outgrowth and spine density. Conversely, sirtinol significantly decreased levels of sirtuin 1 expression and phosphorylation of ERK1/2, mTORC1, and p70S6K in a concentration-dependent manner under normal conditions. Moreover, sirtinol significantly decreased dendritic outgrowth and spine density. Consistent with the results of sirtinol, sirtuin 1 knockdown using sirtuin 1 siRNA transfection significantly decreased dendritic outgrowth and spine density as well as phosphorylation levels of ERK1/2 and mTORC1. These data suggest that sirtuin 1 enhances dendritic outgrowth and spine density by activating mTORC1 signaling.

4-Hydroxybenzaldehyde Restricts the Intracellular Growth of Toxoplasma gondii by Inducing SIRT1-Mediated Autophagy in Macrophages

  • Lee, Jina;Choi, Jae-Won;Han, Hye Young;Kim, Woo Sik;Song, Ha-Yeon;Byun, Eui-Baek;Byun, Eui-Hong;Lee, Young-Ha;Yuk, Jae-Min
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.1
    • /
    • pp.7-14
    • /
    • 2020
  • Toxoplasma gondii is an intracellular protozoan parasite that infects approximately one third of the human population worldwide. Considering the toxicity and side effects of anti-toxoplasma medications, it is important to develop effective drug alternatives with fewer and less severe off-target effects. In this study, we found that 4-hydroxybenzaldehyde (4-HBA) induced autophagy and the expression of NAD-dependent protein deacetylase sirtuin-1 (SIRT1) in primary murine bone marrow-derived macrophages (BMDMs). Interestingly, treatment of BMDMs with 4-HBA significantly reduced the number of macrophages infected with T. gondii and the proliferation of T. gondii in infected cells. This effect was impaired by pretreating the macrophages with 3-methyladenine or wortmannin (selective autophagy inhibitors) or with sirtinol or EX527 (SIRT1 inhibitors). Moreover, we found that pharmacological inhibition of SIRT1 prevented 4-HBA-mediated expression of LC3-phosphatidylethanolamine conjugate (LC3-II) and the colocalization of T. gondii parasitophorous vacuoles with autophagosomes in BMDMs. These data suggest that 4-HBA promotes antiparasitic host responses by activating SIRT1-mediated autophagy, and 4-HBA might be a promising therapeutic alternative for the treatment of toxoplasmosis.

A Review of Sirtuin Inhibitors in Therapeutics, Pharmaceutics, and Plant Research (치료제, 조제학 및 식물을 위한 서투인 억제제의 유용성)

  • Lee, Yew
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.96-105
    • /
    • 2020
  • Sirtuin inhibitors are pharmaceutically and therapeutically valuable compounds that inhibit sirtuin, a type III histone deacetylase. Synthetic sirtuin inhibitors were discovered and characterized using cell-based screens in yeast (Saccharomyces cerevisiae) and have been used in the study of aging, carcinogenesis, and diabetes, all of which are related to sirtuin function. For medical applications, synthetic inhibitors have been further developed for increased potency and specificity, including compounds containing nicotinamide, thioacetyl lysine, β-naphthol, and indole derivatives. Suramin, tenovin, and their analogues were developed as a result. Sirtuin inhibitors were found to affect organic development and have been used to genetically modify plants, although a sirtinol-resistant mutation in the biosynthesis of a molybdopterin cofactor for an aldehyde oxidase has been identified. Some natural flavonoids, and catechin and quercetin derivatives also act as sirtuin inhibitors have been studied to identify a more potent inhibitor for therapeutic purposes. In this review, sirtuin is introduced and the therapeutic inhibitors that have been developed are presented, particularly sirtinol which has been used for genetic modification in plants though it was not designed to be so. Sirtuin inhibitors with greater potency and selectivity are required and those developed in pharmaceutics should be used in plant research to identify more authentic sirtuins in plants.

Duck Oil-loaded Nanoemulsion Inhibits Senescence of Angiotensin II-treated Vascular Smooth Muscle Cells by Upregulating SIRT1

  • Kang, Eun Sil;Kim, Hyo Juong;Han, Sung Gu;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.106-117
    • /
    • 2020
  • Cellular senescence is associated with age-related vascular disorders and has been implicated in vascular dysfunctions. Here, we show that duck oil-loaded nanoemulsion (DO-NE) attenuates premature senescence of vascular smooth muscle cells (VSMCs) triggered by angiotensin II (Ang II). Compared with control nanoemulsion (NE), DO-NE significantly inhibited the activity of senescence-associated β-galactosidase, which is a biomarker of cellular senescence, in Ang II-treated VSMCs. SIRT1 protein expression was dose- and time-dependently induced in VSMCs exposed to DO-NE, but not in those exposed to NE, and SIRT1 promoter activity was also elevated. Consistently, DO-NE also dose-dependently rescued Ang II-induced repression of SIRT1 expression, indicating that SIRT1 is linked to the anti-senescence action of DO-NE in VSMCs treated with Ang II. Furthermore, the SIRT1 agonist resveratrol potentiated the effects of DO-NE on VSMCs exposed to Ang II, whereas the SIRT1 inhibitor sirtinol elicited the opposite effect. These findings indicate that DO-NE inhibits senescence by upregulating SIRT1 and thereby impedes vascular aging triggered by Ang II.

Effects of the Fraction of Sambucus Williamsii, NNMBS 246, on Osteoblastic Differentiation

  • Kang, Soon-Il;Park, Jaesuh;Kwon, Il-Keun;Kim, Eun-Cheol
    • CELLMED
    • /
    • v.8 no.3
    • /
    • pp.13.1-13.8
    • /
    • 2018
  • In the field of osteoporosis, there has been growing interest in anabolic agents that enhance bone formation. The purpose of this study was to examine the effects of NNMBS 246 osteoblastic differentiation with associated signaling pathways. NNMBS 246 markedly increased alkaline phosphatase (ALP) activity and calcium nodule formation. Stimulation with NNMBS 246 not only increased the differentiation markers (ALP, OPN, OCN) level and transcription markers (RUNX2, Osterix) mRNA expression but also upregulated the ECM molecules and OPG mRNA expression. Treatments of NNMBS 246 downregulated MMPs (MMP-1, MMP-2, MMP-9), but RANKL mRNA expression. Furthermore, NNMBS 246 activated osteoblastic differentiation markers and formed calcium nodules in human periodontal ligament cells (hPDLCs) and cementoblast cells. NNMBS 246 induced phosphorylation of MAPKs, Akt, nuclear p65 and IkB-${\alpha}$. BMP-2/Smad and ${\beta}$-catenin signaling pathways were activated by NNMBS 246. Sirtinol (SIRT1 inhibitor) inhibited NNMBS 246-induced osteoblastic differentiation markers mRNA expression. These results suggested that NNMBS 246 has the potential to enhance osteoblastogenesis probably through the activation of BMP/Smad and ${\beta}$-catenin signal pathways, and SIRT1 plays as critical mediator in bone anabolic effect of NNMBS 246.

Whey Protein Attenuates Angiotensin II-Primed Premature Senescence of Vascular Smooth Muscle Cells through Upregulation of SIRT1

  • Hwang, Jung Seok;Han, Sung Gu;Lee, Chi-Ho;Seo, Han Geuk
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.917-925
    • /
    • 2017
  • Whey protein, a by-product of milk curdling, exhibits diverse biological activities and is used as a dietary supplement. However, its effects on stress-induced vascular aging have not yet been elucidated. In this study, we found that whey protein significantly inhibited the Ang II-primed premature senescence of vascular smooth muscle cells (VSMCs). In addition, we observed a marked dose- and time-dependent increase in SIRT1 promoter activity and mRNA in VSMCs exposed to whey protein, accompanied by elevated SIRT1 protein expression. Ang II-mediated repression of SIRT1 level was dose-dependently reversed in VSMCs treated with whey protein, suggesting that SIRT1 is involved in preventing senescence in response to this treatment. Furthermore, resveratrol, a well-defined activator of SIRT1, potentiated the effects of whey protein on Ang II-primed premature senescence, whereas sirtinol, an inhibitor of SIRT1, exerted the opposite. Taken together, these results indicated that whey protein-mediated upregulation of SIRT1 exerts an anti-senescence effect, and can thus ameliorate Ang II-induced vascular aging as a dietary supplement.