• Title/Summary/Keyword: sintering mechanism

Search Result 172, Processing Time 0.03 seconds

A Consideration on Segregation Process of Dopant at WC/Co and WC/WC Interfaces in VC Doped WC-Co Submicro-grained Hardmetal

  • Kawakami, Masaru;Terada, Osamu;Hayashi, Koji
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.334-335
    • /
    • 2006
  • WC/WC interface in VC mono-doped WC-10mass%Co submicro-grained hardmetals of $0.5\;{\mu}m$ was investigated together with WC/Co interface by using HRTEM and XMA. The thickness of V-rich layer and the analytical value of V at WC/WC interface were almost the same as those at WC/Co interfaces. These results, etc., suggested that the V-rich layers at both interfaces were not generated by an equilibrium segregation mechanism in the sintering stage, but generated by a preferential precipitation mechanism during the solidification of Co liquid phase in the cooling stage. Based on this suggestion, we succeeded in developing a nano-grained hardmetal with 100 nm $(0.1\;{\mu}m)$.

  • PDF

A Study on The Grain Boundary State of ${\alpha}-Fe_2O_3$ Thermistor by Frequency Properties (주파수 특성에 의한 ${\alpha}-Fe_2O_3$ Thermistor의 계면준위 해석)

  • Hong, H.K.;Kang, H.B.;Kim, B.H.;Choi, B.G.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.227-230
    • /
    • 1990
  • The addition of titanium has come to produce an increase in the conductivity of ${\alpha}-Fe_2O_3$ and has been shown NTC ( negative temperature coefficient ) characteristics. Titanium enters the ${\alpha}-Fe_2O_3$ lattice substitutionally as $Ti^{4+}$,thus producing an $Fe^{2+}$ and maintaining the average charge per cation at three. Thus the $Fe^{2+}$ acts as a donor center with respect to the surrounding $Fe^{3+}$ ions. The sintering temperature, compacting pressure and sintering tire have an effect on the electrical properties. C-V and other properties have been measured on polycrystalline samples of ${\alpha}-Fe_2O_3$ containing small deviations from stoichiometry and small amounts of added Titanium. This measurment was made in the course of an investigation of the NTC mechanism in oxides whose cations have a partially filled d-level. C-V and frequency properties have been applied to the measurement of the trap barrier properties at the grain boundary. The double Schottky barrier at the grain boundary is the major cause of the NTC mechanism in NTC thermistor of ${\alpha}-Fe_2O_3$ containing N-type impurity.

  • PDF

Bloating mechanism for coal ash with iron oxide (철분이 많이 함유된 석탄회의 발포거동)

  • Lee, Ki Gang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • The purpose of this study was to figure out the impacts of iron oxide types and dosages to bloating when producing artificial lightweight aggregates by utilization of recycled resources such as bottom-ash, reject-ash and dredgedsoil. In order to figure out chemical characteristics of raw materials, XRD and XRF analyses were performed. 50 wt% of dredged-soil, 15 wt% of bottom-ash and 35wt.% of reject-ash were mixed, then the amount of iron oxide was varied at 5 to 30 wt% with intervals of 5 wt% with $Fe_2O_3$ and $Fe_3O_4$ respectively. As molded aggregates were sintered by rapid sintering in intervals of $40^{\circ}C$ from $1060^{\circ}C$ to $1180^{\circ}C$, specific gravity and water absorption were measured. As a result, the artificial lightweight aggregate with iron oxide of 10~15 vol% showed the lowest specific gravity, and it was identified that the more iron oxide vol% increases, the more specific gravity increases because of liquid phase sintering.

Bloating Mechanism of Artificial Lightweight Aggregate for Recycling the Waste Glass (폐유리를 재활용한 인공경량골재의 발포기구)

  • Kang, Shin-Hyu;Lee, Ki-Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.445-449
    • /
    • 2010
  • The purpose of this study is to improve recycling rate of the waste glasses by investigating bloating mechanism. In this study, we use waste glass(W/G) and hard clay(H/C) as raw materials. The artificial lightweight aggregates were formed by plastic forming($\phi$=10 mm) and sintered by fast firing method at different temperatures(between 700 and $1250^{\circ}C$). The physical properties of the aggregates such as bulk specific gravity, adsorption and microstructure of surface and cross-section are investigated with the sintering temperature and rate of W/G-H/C contents. As the result of the bulk specific gravity graphs, we can found out the inflection point at content of W/G 60 wt%. From the microstructure images, we considered the artificial lightweight aggregates content of W/ G over 60wt% are distributed numerous micro-pores by organic oxidation without Black Core and the artificial lightweight aggregates of W/G below 60 wt% are distributed macro-pores with Black Core.

Dispersion of Silicon Nitride Particles and Sintering Additives of AlN and Nd$_2$O$_3$ in Nonaqueous Suspending Media (비수계분산매체에서 질화규소와 소결첨가제 AlN 및 Nd$_2$O$_3$의 분산)

  • 김재원;백운규;윤경진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.210-219
    • /
    • 1999
  • The fundamental dispersion property of Si2N4 and a combination of AlN and Nd2O3 as sintering additives in a variety of organic solvents such as alcohols, hydrocarbons, ketones, and ethers was investigated. The stabilization mechanism and interaction between organic functional groups of the various organic additives were studied to clarify the dispersibility of the ceramic particles in the nonaqueous suspending medium. characterization of the suspensions was based mainly on electrokinetic sonic amplitude(ESA) measurements and the flow curves obtained from the rheological studies as well as estimated Hamaker constants. It was found that the contribution of electrostatic repulsive forces to the Si3N4, AlN and Nd2O3 stabilization in organic media is appreciably greater than anticipated and is dependent on the physicochemical properties of organic solvents.

  • PDF

Characterization of Lightweight Earthenware Tiles using Foaming Agents

  • Lee, Won-Jun;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho;Hwang, Hae-Jin;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.473-478
    • /
    • 2015
  • Green bodies of earthenware tile were prepared from a mixture of earthenware tile powder and SiC as forming agents by applying a conventional process. Granule powder for tile samples was prepared using the spray drying method with commercial earthenware raw material with a quantity of SiC of 0.3 wt%. The applied pressure was $250kg{\cdot}f/m^2$ and the firing temperature was $1050-1200^{\circ}C$. The effects of the SiC particle size and sintering temperature on the open porosity and total porosity were investigated and the correlative mechanism was also discussed. While total porosity was not significantly changed by decreasing the SiC particle size, the open porosity showed a gradual decrease, which represents an increase of the closed porosity. As the sintering temperature increased, coarsening was made among the pores due to excessive oxidation. The volume shrinkage and bending strength were demonstrated for the sintered tile samples. The sintered bulk density was also measured to determine the weight reduction value.

Fabrication of ZrB2-based Composites for Ultra-high Temperature Materials (초고온 소재용 ZrB2계 복합소재의 제조)

  • Kim, Seong-Won;Chae, Jung-Min;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Nahm, Sahn
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.442-448
    • /
    • 2009
  • $ZrB_2$-based composites are candidate materials for ultra-high temperature materials (UHTMs). $ZrB_2$ has become an indispensable ingredient in UHTMs, due to its high melting temperature, relatively low density, and excellent resistance to thermal shock or oxidation. $ZrB_2$ powders are usually synthesized by solid state reactions such as carbothermal, borothermal, or combined carbothermal reaction. SiC is added to this system in order to enhance the oxidation resistance of $ZrB_2$. In this study, $ZrB_2$?based composites were successfully synthesized and densified through two different processing paths. $ZrB_2$ or $ZrB_2$ 25 vol.%SiC was fully synthesized from oxide starting materials with reducing agents after heat treatment at 1400$^{\circ}C$. Besides, $ZrB_2$?20 vol.%SiC was fully densified with $B_4C$ as a sintering additive after hot pressing at 1900$^{\circ}C$. The synthesis mechanism and the effect of sintering additives on densification of $ZrB_2$ ?SiC composites were also discussed.

Sintering Behavior and Electrical Properties of Strontium Titanate-Based Ceramic Interconnect Materials for Solid Oxide Fuel Cells (고체산화물 연료전지용 Strontium Titanate 세라믹 접속자 소재의 소결 거동 및 전기적 특성)

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.80.1-80.1
    • /
    • 2010
  • A strontium titanate ($SrTiO_3$)-based material with a perovskite structure is considered to be one of the promising alternatives to $LaCrO_3$-based materials since $SrTiO_3$ perovskite shows a high chemical stability under both oxidizing and reducing atmospheres at high temperatures. $SrTiO_3$ materials exhibit an n-type semiconducting behavior when it is donor-doped and/or exposed to a reducing atmosphere. In this work, $Sr_{1-x}La_xTi_{1-y}M_yO_3$ materials doped with $La^{3+}$ in A-sites and aliovalent transition metal ions ($M^{n+}$) in B-sites were synthesized by the modified Pechini method. The X-ray diffraction analysis indicated that the materials synthesized by the Pechini process exhibited a single curbic perovskite-type structure without any impurity phases, and are tolerant, to some extent, to cation doping. The sintering behaviors of $Sr_{1-x}La_xTi_{1-y}M_yO_3$ in $H_2/N_2$ and air were characterized by dilatometry and microstructural observations. The electrical conduction mechanism and the dopant effect are discussed based on the defect structures and the electrical conductivities measured at various oxygen partial pressures and temperatures.

  • PDF

A Study on alumina Sintering through the Oxidation of AI Powder. (Al 분말의 산화에 의한 $Al_2O_3$ 소결에 관한 연구)

  • 박정현;안주삼;김해두
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.3
    • /
    • pp.179-186
    • /
    • 1982
  • This research is to aim at the study of sintering mechanism through the observation of microstructure by scanning electron microscopy, after the mixture of 30wt% $Al_2O_3$ (White Alundum) powder is fired in air at the temperature range of 1350~150$0^{\circ}C$ in order to sinter $Al_2O_3$-Al through the oxidation of Al powder. The results obtained in this experiment are as follows: 1. While the compressive strength of $Al_2O_3$(WA) body fired at $1450^{\circ}C$ for 5hrs in air is 150kg/$\textrm{cm}^2$, that of Al-$Al_2O_3$ body fired at 135$0^{\circ}C$, $1400^{\circ}C$ for 5hrs in air is 1100kg/$\textrm{cm}^2$, 1600kg/$\textrm{cm}^2$ respectively, and the higher the firing temperature, the more the compressive strength increases. These results from the sintering effect between $Al_2O_3$(WA) grains and surrounding Al-oxidation layer. 2. While the compressive strength of Al2O3(WA) body fired at 150$0^{\circ}C$ for 5hrs in air is 250kg/$\textrm{cm}^2$, the compressive strength of Al-$Al_2O_3$body fired under the same condition is 2050kg/$\textrm{cm}^2$ and water absorption 9.0%, porosity 23.3%, bulk density 2.60gr/$cm^3$. It is assumed that these results come from not only the grain growth of oxidized Al grains but also the increase of bonding strength between $Al_2O_3$(WA) grains.

  • PDF

HNO3 Etching Properties of BaO-B2O3-ZnO-P2O5 System of Barrier Ribs in PDP (플라스마 디스플레이 패널의 격벽용 BaO-B2O3-ZnO-P2O5계의 HNO3를 이용한 에칭 특성)

  • Jeon, J.S.;Kim, J.M.;Kim, N.S.;Kim, H.S.
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.235-240
    • /
    • 2006
  • We investigated the effect of ZnO filler on the microstructure of $BaO-B_2O_3-ZnO-P_2O_5$ glass system to find an etching mechanism of barrier ribs. The sintering behavior of composites heated in the temperature range $560-600^{\circ}C$ was studied by volumetric shrinkage rate and microstructure. The etching test was carried out in $HNO_3$ solution at $50^{\circ}C$ for 10 min. The volumetric shrinkage of sintered sample decreased with the increased firing temperature because of the formation of two crystals. Glass and ZnO filler react forming the $BaZn_2(PO_4)_2$ crystal phases during the sintering process. Etching phenomenon of sintered samples by $HNO_3$ showed that the $BaZn_2(PO_4)_2$ crystal phase was strongly leached compared to glass matrix, crystal phases and fillers. Therefore, the control of interface by condition of sintering is so important to achieve etching effect in barrier ribs.