• Title/Summary/Keyword: sintered metal filter

Search Result 17, Processing Time 0.025 seconds

Development of Membrane Filters with Nanostructured Porous Layer by Coating of Metal Nanoparticles Sintered onto a Micro-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 코팅에 의한 나노구조 기공층 멤브레인 필터 개발)

  • Lee, Dong-Geun;Park, Seok-Joo;Park, Young-Ok;Ryu, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.8
    • /
    • pp.617-623
    • /
    • 2008
  • The membrane filter adhered with nanostructured porous layer was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto a conventional micron-fibrous metal filter as a substrate filter. The Sintered-Nanoparticle-Agglomerates-coated NanoStructured porous layer Membrane Filter (SNA-NSMF), whose the filtration performance was improved compared with the conventional metal membrane filters, was developed by adhesion of nanoparticle-agglomerates of dendrite structure sintered onto the micron-fibrous metal filter. The size of nanoparticle-agglomerates of dendrite structure decreased with increasing the sintering temperature because nanoparticle-agglomerates shrank. When shrinking nanoparticle-agglomerates were deposited and treated with heat onto the conventional micron-fibrous metal filter, pore size of nanostructured porous layer decreased. Therefore, pressure drops of SNA-NSMFs increased from 0.3 to 0.516 kPa and filtration efficiencies remarkably increased from 95.612 to 99.9993%.

Fabrication of Low Density Sintered Stainless Steel Filter

  • Seok, Se-Hoon;Park, Dong-Kyu;Jung, Kwang-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.611-612
    • /
    • 2006
  • In a manufacturing technique of the sintered filter, pressureless sintering method has good permeability, it is not need the binder and lubricant used on compacting process, so it has little contamination and it is easy to control the pore size and shape but the mechanical strength is low relatively and it is difficult that parts of complicate form are manufactured. In the case of manufacturing the filter by press and sintering method, in order to be satisfactory characteristic of un-pressed filter, in this study sintered metal filter fabricated by using 30-40mesh stainless steel 316L powder and additive agents. Porosity and structure of pores, permeability and mechanical strength of the sintered filter were investigated with the variation sintering conditions. Porosity was nearly constant about $60{\sim}70%$, density, permeability and mechanical strength were changed markedly with quantity of additive materials and sintering conditions.

  • PDF

Development of Metal Filter with Nanoporous Structure by Adhesion of Metal Nanoparticles Sintered onto a Micor-Filter (마이크로-필터 상에 소결 처리된 금속 나노입자 고착에 의한 나노기공체 금속 필터 개발)

  • Lee, Dong Geun;Park, Seok Joo;Park, Young Ok;Ryu, Jeong In
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.397-401
    • /
    • 2008
  • The nanoparticle-agglomerates are synthesized by laser ablation, which have the morphology of dendrite structure. The filtration performance of a conventional micron-fibrous metal filter was improved by adhering nanoparticle-agglomerates onto the filter surface. The Sintered-Nanoparticle-Agglomerates-adhered Filter (SNAF) adhered with nanostructured material was made by heat treatment after deposition of nanoparticle-agglomerates sintered in aerosol phase onto the micron-fibrous metal filter. As the sintering temperature increases, the pressure drop of the filter increases a little but the filtration efficiency increases remarkably. This is due to increase of surface area of nanoparticle-agglomerates adhered onto the micron-fibrous metal filter.

Performance Evaluation of Sintered Metal Filter in LILW Vitrification Facility (중.저준위 방사성폐기물 유리화설비에서 금속필터 적용성평가)

  • Park, Seung-Chul;Kim, Byong-Ryol;Hwang, Tae-Won
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.146-153
    • /
    • 2006
  • A performance test of the stainless steel based sintered metal filter was conducted on the low and intermediate level radioactive waste (LILW) vitrification process. The applicability of the metal filter was based on the test results as well. The baseline pressure drop of the metal filter was evaluated similar to the ceramic filter. During the test, when the flow rate of off-gas was $110Nm^{3}/h$, the total baseline pressure drop was shown as $92mmH_{2}O$. The total pressure drop was attributed to the filter media and the residual dust layer and the value of each was $25mmH_{2}O\;and\;67mmH_{2}O$ respectively. The SEM-EDS spectrum and micrograph of the metal filter specimen showed, no corrosion and no physical damage both at the skin membrane and at the support layer. And most of the baseline pressure drop was caused by the deposition of dust on the surface of the membrane. In conclusion, even though the filter exposure time was short at the test, the performance of the stainless steel based metal filter was acceptable for the treatment of LILW vitrification process.

The Properties of Permeability and Ash-Removal of Sintered Fail Safety Filter of Dust Collector in High Temperature (고온 집진용 Fail Safety 소결 필터의 통기도와 분진제거 특성)

  • Bae S-Y;Ahn I-S;Jung W-H;Choi J-H
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.470-476
    • /
    • 2004
  • The fail safety filter is an assistant filter element to be mounted in order to intercept the particles leaked when the main filter elements are broken. So it should have two contrary functions of being plugged easily to meet the purpose of dust sealing and a high permeability to save the space. The permeability of the metal filter elements were effectively controlled by the following factor: powder size(53-840 ${\mu}m$) and applied pressure(1000-2000 $kgf/cm^2$), and then the compact were sintered for 1 hour at $1200^{\circ}C$ in vacuum sintering furnace. The sintered metal filters was evaluated for the function of the fail safety filter in an experimental unit. The maximum allowable particle size was 420-840 ${\mu}m$, when a CIP pressure of 1500 $kgf/cm^2$ was applied reveals a permeability of about $1.2{\times}10^{10}m^2$ and pore size of about 60 ${\mu}m$. The metal filter produced with stainless steel powder of 480-840 ${\mu}m$ size, which presented excellent permeability than commercial ceramic filter element and plugged with in 3 minutes with the leak of the maximum particle size less than 3 ${\mu}m$.

Fabrication and Permeability of Stainless Steel Filter by using Filler Metal (Filler metal을 이용한 Stainless steel필터의 제조 및 통기도)

  • 배승열;안인섭;성택경;최주호
    • Journal of Powder Materials
    • /
    • v.11 no.4
    • /
    • pp.288-293
    • /
    • 2004
  • The application concept of using a fail safety filter on the filtering system is to prevent the particle leakage when the main filter element is broken at high temperature. In this study, the metal filters were fabricated by pressureless sintering method. The mixture of stainless steel powders and filler metal binder solved in the water solutions of 5% PVA was compacted to form the cylindrical filter without pressure. The compacted filter were sintered in the vacuum sintering furnace at 120$0^{\circ}C$ for 1 hour. The metal filter(produced with powder of 640-840 ${\mu}m$ size) having more than above 50% porosity, 500${\mu}m$ pore size, and permeability of 7.3${\times}$10$^{-11}$m$^{2}$ plugged within 2.5 minute to prevent the leakage of maximum slip particle size of less than 3${\mu}m$.

Sintered $Fe_3Al$ Intermetallic - A New Filter Element for Hot Gas Filtration

  • Xing, Y.;Kuang, X.;Wang, F.;Kuang, C.;Fang, Y.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.597-598
    • /
    • 2006
  • Gas filtration at high temperature from industrial processes offers various advantages such as increasing process efficiency, improving heat recovery and materials resource recovery, etc. At the same time, it is an advanced environment protection technology. This paper describes a newly developed metallic filter element. The manufacturing process of sintered $Fe_3Al$ metallic powder and the mechanical and filtration characteristics of this filter element were investigated. In this work, the phase constituent changes of the $Fe_3Al$ powder during sintering were studied. The newly developed filter elements were found to have excellent corrosion resistance, good thermal resistance, high strength and high filtration efficiency.

  • PDF

Study on Metal Microfilter Coated with Ceramics by Using Plasma Thermal Spray Method (플라즈마 용사를 이용한 복합세라믹 미세필터 연구)

  • Song, In-Gyu;Lee, Young-Min;Shin, Hyun-Myung;Choi, Hae-Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1035-1040
    • /
    • 2011
  • This research was performed on a microfilter made of a hybrid material (ceramic + metal) that was coated with ceramics on the metal-filter surface by using the thermal spray method. The ceramic powders used were $Al_2O_3+40TiO_2$ powder with a particle size of $20{\mu}m$ and $Al_2O_3$ (98%+)powder with a particle size of $45{\mu}m$. The metal filters were filter-grade $20{\mu}m$, $30{\mu}m$, and $50{\mu}m$ sintered metal powder filters (SIKA-R 20 IS, 30 IS, 50 IS; Sinter Metals Filters) and filter-grade $75{\mu}m$ sintered mesh filter with five layers. Ceramic-coated filters that were coated using the thermal spray method had a great influence on powder material, particle size, and coating thickness. However, these filters showed a fine performance when used as micro-filters.

Velocity Considered Sectional Porosity Equivalent Model (VSPE) of Filters for CFD Analysis of Breakaway Devices (수소 브레이크어웨이 디바이스 유동해석을 위한 필터의 구간별 다공성 등가 모델 제시)

  • Son, Seong-Jae;An, Su-Jin;Song, Tae-Hoon;Joe, Choong-Hee;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.8
    • /
    • pp.82-90
    • /
    • 2019
  • We propose an equivalent model of a sintered metal mesh filter calculated by Ergun's equation and polynomial regression for the CFD analysis of breakaway devices at a hydrogen fueling station. CFD analysis of filters that cause high pressure loss is essential because breakaway devices in high-pressure hydrogen conditions require low pressure loss. A differential pressure experiment with a filter was performed in a low-pressure air condition considering similarities. An equivalent model was developed by deriving the resistance value by the polynomial regression using the experimental results. The results of CFD analysis using the equivalent model show that there was almost no error in the operating condition of the breakaway device compared to the experimental results. Through this work, we believe that the proposed equivalent model of a filter can be applied to the analysis of breakaway devices in hydrogen fueling stations. We will study how to optimize the shape and position of the filter in breakaway devices using the developed equivalent model.

Fabrication of Metal Gas Filter by Material Extrusion Additive Manufacturing Process

  • Yu-Jeong Yi;Min-Jeong Lee;Su-Jin Yun;Manho Park;Ju-Yong Kim;Jungwoo Lee;Jung-Yeul Yun
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1517-1520
    • /
    • 2022
  • Recently, 3D printing processes have been used to manufacture metal powder filters with manufacturing complex-shape. In this study, metal powder filters of various shapes were manufactured using the metal extrusion additive manufacturing (MEAM) process, which is used to manufacture three-dimensional structures by extruding a filament consisting of a metal powder and a binder. Firstly, filaments were prepared by appropriately mixing SUS316 powder with sizes ranging from 7.5 ㎛ to 50 ㎛ and a binder. These filaments were extruded at temperatures of 100℃ to 160℃ depending on the type of filament being manufactured, to form three types of cylindrical filter. Specimens were sintered in a high vacuum atmosphere furnace at 850℃ to 1050℃ for 1 hour after debinding. The specimens were analyzed for permeability using a capillary flow porometer, porosity was determined by applying Archimedes' law and microstructure was observed using SEM.