• Title/Summary/Keyword: singular potential

Search Result 60, Processing Time 0.029 seconds

Estimation of Defect Position on the Pipe Line by Inverse Problem (역 문제에 의한 파이프의 결함위치 평가)

  • Park, Sung-Oan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.139-144
    • /
    • 2011
  • This paper presents a boundary element application to determine the optimal impressed current densities at defect position on the pipe line. In this protection paint, enough current must be impressed to lower the potential distribution on the metal surface to the critical values. The optimal impressed current densities are determined in order to minimize the power supply for protection. This inverse problem was formulated by employing the boundary element method. Since the system of linear equations obtained was ill-conditioned, including singular value decomposition, conjugate gradient method were applied and the accuracies of these estimation. Several numerical examples are presented to demonstrate the practical applicability of the proposed method.

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.

Stress Intensity Factors and Kink Angle of a Crack Interacting with a Circular Inclusion Under Remote Mechanical and Thermal Loadings

  • Lee, Saebom;Park, Seung-Tae;Earmme, Youn-Young;Chung, Dae-Youl
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1120-1132
    • /
    • 2003
  • A problem of a circular elastic inhomogeneity interacting with a crack under uniform loadings (mechanical tension and heat flux at infinity) is solved. The singular. integral equations for edge and temperature dislocation distribution functions are constructed and solved numeric-ally, to obtain the stress intensity factors. The effects of the material property ratio on the stress intensity factor (SIF) are investigated. The computed SIFs are used to predict the kink angle of the crack when the crack grows.

Beamforming-based Partial Field Decomposition in Acoustical Holography (음향 홀로-그래피에서 빔 형성을 이용한 부분 음장 분리)

  • 황의석;조영만;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.6
    • /
    • pp.200-207
    • /
    • 2001
  • In this paper, a new method for Partial field decomposition is developed that is based on the beamforming algorithm for the application of acoustical holography to a composite sound field generated by multiple incoherent sound sources. In the proposed method, source Positions are first predicted by MUSIC(multiple signal classification) algorithm. The composite sound fields can then be decomposed into each partial field by the beamforming. Results of both numerical simulations and experiments show that the method can find each partial field very accurately and effectively, and that it also has Potential to be used for application to distributed sources.

  • PDF

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho;Byun, Chang Woo;Choi, Nark Nyul;Kim, Dae-Soung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1269-1278
    • /
    • 2018
  • Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

An Analysis of Spot Cloud in Cloud Computing

  • Mansoor, Usman;Mehmood, Usman;Khan, Faraz Idris;Kim, Ki-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.242-245
    • /
    • 2011
  • Cloud Computing is a fast developing domain in computer system architecture which enables dynamically scalable and virtualized resources to its users. Spot Cloud is the next evolutionary step in this field which allows the cloud computing resources to be treated as a market commodity. Cloud computing vendors will now be able to put their un used computational resources for sale using the singular access platform provided by Spot Cloud. Meanwhile customers will be able to buy/sell these resources according to their requirements. This paper analyzes the idea of Spot Cloud and the anticipated impact it will have on Cloud Computing globally. The paper also presents the risks and inherent barriers associated with this idea and how they might hinder the development of Spot Cloud to its full potential.

POSITIVE RADIAL SOLUTIONS FOR A CLASS OF ELLIPTIC SYSTEMS CONCENTRATING ON SPHERES WITH POTENTIAL DECAY

  • Carriao, Paulo Cesar;Lisboa, Narciso Horta;Miyagaki, Olimpio Hiroshi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.839-865
    • /
    • 2013
  • We deal with the existence of positive radial solutions concentrating on spheres for the following class of elliptic system $$\large(S) \hfill{400} \{\array{-{\varepsilon}^2{\Delta}u+V_1(x)u=K(x)Q_u(u,v)\;in\;\mathbb{R}^N,\\-{\varepsilon}^2{\Delta}v+V_2(x)v=K(x)Q_v(u,v)\;in\;\mathbb{R}^N,\\u,v{\in}W^{1,2}(\mathbb{R}^N),\;u,v&gt;0\;in\;\mathbb{R}^N,}$$ where ${\varepsilon}$ is a small positive parameter; $V_1$, $V_2{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ and $K{\in}C^0(\mathbb{R}^N,[0,{\infty}))$ are radially symmetric potentials; Q is a $(p+1)$-homogeneous function and p is subcritical, that is, 1 < $p$ < $2^*-1$, where $2^*=2N/(N-2)$ is the critical Sobolev exponent for $N{\geq}3$.

SenSation : A New Translational 2 DOF Haptic Device with Parallel Mechanism

  • Chung, Young-Hoon;Lee, Jae-Won
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2001
  • We propose a new two-degree of freedom parallel mechanism for a haptic device and will refer to the mechanism as the SenSation. The SenSation is designed in order to improve the kinematic performanced and to achieve static balance. We use the panto graph mechanisms in order to change the location of active joints, which leads to transform a direct kinematic singularity into a nonsingularity. The direct kinematic singular configurations of the SenSation occur near the workspace boundary. Using the property that position vector of rigid body rotating about a fixed point is normal to the velocity vector, Jacobian matrix is derived. Using the vector method, two different types of singularities of the SenSation can be identified and we discuss the physical significance of each of the three types of singularities. We will compare the kinematic performances(force manipulability ellipsoid, kinematic isotropy) of the SenSation with those of five-var parallel mechanism. By specifying that the potential energy be fixed, the conditions for the static balancing of the SenSation is derived. The static balancing is accomplished by changing the center of mass of the links.

  • PDF

High-z Universe probed via Lensing by QSOs (HULQ): Expected Number of QSOs acting as Gravitational Lenses

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.37.4-38
    • /
    • 2018
  • The HULQ project proposes to use gravitational lensing to determine the masses of QSO host galaxies, an otherwise difficult goal. If these host galaxy masses, along with their SMBH masses from single-epoch measurements, are estimated for a substantial number of QSOs at various redshifts, the co-evolution of SMBHs and their host galaxies can be studied for a large portion of the history of the universe. To determine the feasibility of this study, we present how to estimate the number of sources lensed by QSO hosts, i.e. the number of lensing QSO host galaxies (hereafter QSO lenses). SMBH masses in the literature are transformed into the velocity dispersions of their host galaxies using the M_BH -sigma relation, and in turn the Einstein radii for each QSO -source redshift combination is calculated, assuming singular isothermal spherical mass distributions. Using QSOs and galaxies as potential sources, the probability of a QSO host galaxy being a QSO lens is calculated, as a function of limiting magnitude. The expected numbers of QSO lenses are estimated for ongoing and future wide-imaging surveys, and the Hyper Suprime-Cam Wide survey is illustrated as an example.

  • PDF

Pin Power Reconstruction of HANARO Fuel Assembly via Gamma Scanning and Tomography Method

  • Seo, Chul-Gyo;Park, Chang-Je;Cho, Nam-Zin;Kim, Hark-Rho
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.25-33
    • /
    • 2001
  • To determine the pin power distribution without disassembling, HANARO fuel assemblies are gamma-scanned and then the distribution is reconstructed tv using the tomography method. The iterative least squares method (ILSM and the wavelet singular value decomposition method (WSVD) are chosen to solve the problem. An optimal convergence criterion is used to stop the iteration algorithm to overcome the potential divergence in ILSM. WSVD gives better results than ILSM , and the average values from the two methods give the best results. The RMSE (root mean square errors) to the reference data are 5.1, 6.6, 5.0, 6.5, and 6.4% and the maximum relative errors are 10.2, 13.7, 12.2, 13.6, and 14.3%, respectively. It is found that the effect of random positions of the pins is important. Although the effect can be accommodated by the iterative calculations simulating the random positions, the use of experimental equipment with a slit covering the whole range of the assembly horizontally is recommended to obtain more accurate results. We made a new apparatus using the results of this study and are conducting an experiment in order to obtain more accurate results.

  • PDF