• Title/Summary/Keyword: singular point

Search Result 211, Processing Time 0.028 seconds

SEMI-CONVERGENCE OF THE PARAMETERIZED INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS

  • YUN, JAE HEON
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1669-1681
    • /
    • 2015
  • In this paper, we provide semi-convergence results of the parameterized inexact Uzawa method with singular preconditioners for solving singular saddle point problems. We also provide numerical experiments to examine the effectiveness of the parameterized inexact Uzawa method with singular preconditioners.

A Study on the Extraction of the Minutiae and Singular Point for Fingerprint Matching

  • Na Ho-Jun;Kim Chang-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.6
    • /
    • pp.761-767
    • /
    • 2005
  • The personal identification procedure through the fingerprints is divided as the classification process by the type of the fingerprints and the matching process to confirm oneself. Many existing researches for the classification and the matching of the fingerprint depend on the number of the minutiae of the fingerprints and the flow patterns by their direction information. In this paper, we focus on extracting the singular points by using the flow patterns of the direction information from identification. The extracted singular points are utilized as a standard point for the matching process by connecting with the extracted information from the singular point embodied. The orthogonal coordinates which is generated by the axises of the standard point can increase the accuracy of the fingerprints matching because of minimizing the effects on the location changes of the fingerprint images.

  • PDF

POSITIVE SOLUTIONS OF SINGULAR FOURTH-ORDER TWO POINT BOUNDARY VALUE PROBLEMS

  • Li, Jiemei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1361-1370
    • /
    • 2009
  • In this paper, we consider singular fourth-order two point boundary value problems $u^{(4)}$ (t) = f(t, u), 0 < t < 1, u(0) = u(l) = u'(0) = u'(l) = 0, where $f:(0,1){\times}(0,+{\infty}){\rightarrow}[0,+{\infty})$ may be singular at t = 0, 1 and u = 0. By using the upper and lower solution method, we obtained the existence of positive solutions to the above boundary value problems. An example is also given to illustrate the obtained theorems.

  • PDF

탄성학 문제의 경계적분방정식에서 초특이해 커널의 해법

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.573-577
    • /
    • 1995
  • An integration method for the hypersingular kernels, in the boundary integralequations used for the solution of crack-like problems in elasticity, has been developed. To isolate the stronger singularities, the actual boundaries are replaced by the smoothly curved auxiliary boundaries which provide the detoured, non-singular integration paths. The auxiliary boundary can be interpreted as a contracted form of the actual boundaries except for the singular element where the collocating point is located. For an optimal integration path for every singular collocation point, the auxiliary boundary may have different shape depending on the position of the collocation point on the singular element.

Numerical Study of Laminar Flow over a Protruding Surface (II) - Topological and Kinematical Studies - (돌출된 표면위의 층류유동에 대한 전산 해석적 연구 (II) - 위상학적, 기구학적 연구 -)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1426-1433
    • /
    • 1999
  • Topological and kinematical studies of the singular points found in flows around a surface-mounted cube in a channel are presented. Numerical simulation was carried out using high-resolution grid systems. Singular points(saddles and nodes) were found around the cube, which satisfy the topological rules suggested by Hunt et al. As the Reynolds number increases, the structure of vortices around the cube becomes complex and the number of singular points increases. Nevertheless, the rule governing the numbers of singular points is still valid. This confirms that our simulation is correct from topological and kinematical point of view, and enables one to infer complex flow patterns in our simulation.

EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR SINGULAR THREE-POINT BOUNDARY VALUE PROBLEMS

  • Miao, Chunmei;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.895-902
    • /
    • 2009
  • In this paper, the singular three-point boundary value problem $$\{{{u"(t)\;+\;f(t,\;u)\;=\;0,\;t\;{\in}\;(0,\;1),}\atop{u(0)\;=\;0,\;u(1)\;=\;{\alpha}u(\eta),}}\$$ is studied, where 0 < $\eta$ < 1, $\alpha$ > 0, f(t,u) may be singular at u = 0. By mixed monotone method, the existence and uniqueness are established for the above singular three-point boundary value problems. The theorems obtained are very general and complement previous know results.

  • PDF

A numerical analysis of driven cavity flow using singular finite element method (모서리특이성이 존재하는 유체유동의 특이유한요소를 이용한 수치해석적 연구)

  • ;;Lee, Jin Hee
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2971-2980
    • /
    • 1995
  • A numerical study of fluid flow in driven cavity was carried out using singular finite element method. The driven cavity problem is known to have infinite velocity gradients as well as dual velocity conditions at the singular points. To overcome such difficulties, a finite element method with singular shape functions was used and a special technique was employed to allow multiple values of velocities at the singular points. Application of singular elements in the driven cavity problem has a significant influence on the stability of solution. It was found the singular elements gave a stable solution, especially, for the pressure distribution of the entire flow field by keeping up a large pressure at the singular points. In the existing solutions of driven cavity problem, most efforts were focused on the study of streamlines and vorticities, and pressure were seldom mentioned. In this study, however, more attention was given to the pressure distribution. Computations showed that pressure decreased very rapidly as the distance from the singular point increased. Also, the pressure distribution along the vertical walls showed a smoother transition with singular elements compared to those of conventional method. At the singular point toward the flow direction showed more pressure increase compared with the other side as Reynolds number increased.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.689-706
    • /
    • 2008
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed two point boundary value problems with a boundary layer at one end point. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system. An asymptotically equivalent first order equation of the original singularly perturbed two point boundary value problem is obtained from the theory of singular perturbations. It is used in the fifth order compact difference scheme to get a two term recurrence relation and is solved. Several linear and non-linear singular perturbation problems have been solved and the numerical results are presented to support the theory. It is observed that the present method approximates the exact solution very well.

  • PDF

EXISTENCE OF THE SOLUTIONS FOR THE SINGULAR POTENTIAL ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2012
  • We investigate the multiple solutions for a class of the elliptic system with the singular potential nonlinearity. We obtain a theorem which shows the existence of the solution for a class of the elliptic system with singular potential nonlinearity and Dirichlet boundary condition. We obtain this result by using variational method and critical point theory.

ACCELERATION OF ONE-PARAMETER RELAXATION METHODS FOR SINGULAR SADDLE POINT PROBLEMS

  • Yun, Jae Heon
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.691-707
    • /
    • 2016
  • In this paper, we first introduce two one-parameter relaxation (OPR) iterative methods for solving singular saddle point problems whose semi-convergence rate can be accelerated by using scaled preconditioners. Next we present formulas for finding their optimal parameters which yield the best semi-convergence rate. Lastly, numerical experiments are provided to examine the efficiency of the OPR methods with scaled preconditioners by comparing their performance with the parameterized Uzawa method with optimal parameters.