• Title/Summary/Keyword: singlet oxygen ($^1$ $O_2$) quenching

Search Result 10, Processing Time 0.019 seconds

Singlet Oxygen Quenching by Deoxygadusol and Related Mycosporine-Like Amino Acids from Phytoplankton Prorocentrum micans

  • Suh, Hwa-Jin;Lee, Hyun-Woo;Jung. Jin
    • Journal of Photoscience
    • /
    • v.11 no.32
    • /
    • pp.77-81
    • /
    • 2004
  • Deoxygadusol (DO) and structurally related mycosporine-like amino acids, i.e. mycosporine glycine (MO) and mycosporine taurine (MT), were isolated from phytoplankton Prorocentrum micans and studied for the reactivity toward singlet oxygen. These water-soluble compounds with a cyclohexenone chromophore were all shown to be highly effective in quenching singlet oxygen ($^1$ $O_2$), with the efficiencies being significantly larger compared with histidine, a well-known $^1$ $O_2$ quencher. The $^1$ $O_2$ reaction rate constant ( $k_{Q}$) of DG was determined to be 5.4 ${\times}$ 10$^{7}$ $M^{-1}$ $s^{-1}$ by a steady state method based on competitive inhibition of rubrene oxidation. The feasibility of this method was confirmed by estimating the $k_{Q}$ values for MG and two other quenchers, furfuryl alcohol and 1,4-diazabicyclo [2,2,2]octane, and comparing with those values determined by the time-resolved $^1$ $O_2$ decay method in the previous work.ork.

  • PDF

광용혈에 대한 Ketocarotenoids의 현저한 세포 보호작용에 관한 연구

  • Lee, Su-Nam;Lee, Dae-Hyeong;Lee, Tae-Yeong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.13 no.1
    • /
    • pp.45-71
    • /
    • 1987
  • ${\beta}$-Carotene has been known as an effective quenching agent of singlet oxygen and the carotenoid pigments in general are expected to protect cells against photosensitized oxidations. We are determined the quenching rate constants of several Ketocarotenoids including capsanthin, capsanthin diester, astaxanthin and fucoxanthin, and the relative quenching actiyities against singlet oxygen were compared with those of ${\beta}$-carotene and reported carotenoids. Nevertheless the ketocarotenoids exhibited lower quenching rate constants than ${\beta}$-carotene, they showed more pronounced protective activitives than ${\beta}$-carotene against photohemlysis induced by singlet oxygen. Among the ketocarotenoids investigated, fucoxanthin indicated a significant protective activity for the cell. The results suggested that. 1) 1O2 may be alikely initiator of photohemolysis, but this reaction is followed by slow dark reactions involving secondary reactive species. 2) For protection of RBC against photodynamic action with carotenoids, carotenoids having functional groups such as -C=0 and -OH groups are most efficient. This suggests that partition of carotenoids between the buck and the mombrane and/or their specific binding to membrane proteins are more critical for the photo-protection by carotenoids than is a diffusional quenching of 1O2.

  • PDF

Mycosporine-like Amino Acids as Natural Scavengers of Singlet Oxygen in Marine Organisms: Photoprotection of Biological Systems

  • Suh, Hwa-Jin;Lee, Hyun--Woo;Jin Jung
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.63-65
    • /
    • 2002
  • This report concerns a putative role of mycosporine-like amino acids (MAA) as natural scavengers of singlet oxygen ($^1$O$_2$) in marine organisms. MAA prepared from the ascidian Lissoclinum patella were found to protect biological systems against detrimental effects of the type II photosensitization in vitro. L. patella MAA were resolved into five components, and the relative $^1$0$_2$ quenching efficiencies were measured for three major components in aqueous media. It turned out that they were all effective in scavenging $^1$0$_2$, to different degrees albeit. The results suggest that physiological relevance of MAA in marine organisms may be found in a 'built-in' defense against photooxidative effects of sunlight.

  • PDF

Relaxation Process of the Photoexcited State and Singlet Oxygen Generating Activity of Water-soluble meso-Phenanthrylporphyrin in a DNA Microenvironment

  • Hirakawa, Kazutaka;Ito, Yusuke;Yamada, Takashi;Okazaki, Shigetoshi
    • Rapid Communication in Photoscience
    • /
    • v.3 no.4
    • /
    • pp.81-84
    • /
    • 2014
  • To examine the microenvironmental effect of DNA on the photosensitized reaction, the electron-donor-connecting porphyrin, meso-(9-phenanthryl)-tris(N-methyl-p-pyridinio) porphyrin (Phen-TMPyP), was synthesized. Phen-TMPyP can bind to oligonucleotides with two binding modes, depending on the DNA concentration. The fluorescence lifetime measurement of Phen-TMPyP shows a shorter component than that of the reference porphyrin without the phenanthryl moiety. However, the observed value is much longer than those of previously reported similar types of electron-donor-connecting porphyrins, suggesting that electron-transfer quenching by the phenanthryl moiety is not sufficient. The fluorescence quantum yield of Phen-TMPyP ($5{\mu}M$) decreased with an increase in DNA concentration of up to $5{\mu}M$ base pair (bp), possibly due to self-quenching through an aggregation along the DNA strand, increased with an increase in DNA concentration of more than $5{\mu}M$ bp and reached a plateau. The fluorescence quantum yield of Phen-TMPyP with a sufficient concentration of DNA was larger than that of the reference porphyrin. The singlet oxygen ($^1O_2$) generating activity of Phen-TMPyP was confirmed by the near-infrared emission spectrum measurement. The quantum yield of $^1O_2$ generation was decreased by a relatively small concentration of DNA, possibly due to the aggregation of Phen-TMPyP, and recovered with a sufficient concentration of DNA. The recovered quantum yield was rather smaller than that without DNA, indicating the quenching of $^1O_2$ by DNA. These results show that a DNA strand can stabilize the photoexcited state of a photosensitizer and, in a certain case, suppresses the $^1O_2$ generation.

Highly Sensitive Fluorescent Probes for the Quantitative Determination of Singlet Oxygen (1O2)

  • Ahmed, Syed Rahin;Koh, Kwang-Nak;Kang, Nam-Lyong;Lee, Jae-Beom
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1608-1612
    • /
    • 2012
  • Singlet oxygen ($^1O_2$) is an important species for oxidation in biological processes. $^1O_2$ is implicated in the genotoxic effect, and plays an important role in the cell-signaling cascade and in the induction of gene expression. However, the rapid detection of $^1O_2$ in biological environments with sufficient specificity and sensitivity is hampered by its extremely low emission probability. Here, a layer-by-layer (LbL) film of CdTe quantum dots (QDs), polymers, and ascorbate have been designed as a rapid, highly selective, and sensitive fluorescence probe for $^1O_2$ detection. Upon reaction with $^1O_2$, the probe exhibits a strong photoluminescence (PL) response even at trace levels. This remarkable PL change should enable the probe to be used for $^1O_2$ detection in many chemical and biological systems and as an environmental sensor.

Characteristics of Light Harvesting Chlorophyll-Protein Complex and Singlet Oxygen ($^1O_2$) Quenching in Leaf-burning Disease from Panax ginseng C. A. Meyer (인삼 Light Harvesting Chlorophyll Protein의 특성 및 엽소병에서 Singlet Oxygen($^1O_2$) Quenching)

  • 양덕조;이성택
    • Journal of Ginseng Research
    • /
    • v.13 no.2
    • /
    • pp.158-164
    • /
    • 1989
  • In order to determine the relationships between the lea(-burning disease and the light harvesting chlorophyll-protein (LHCP) complex in Panax ginseng C. A. Meyer, we investigated the chlorophyll-protein (CP) complex of the thylakoid membrane and its characteristics. In P. ginseng four Cp-complex bands determined by non-denaturing SDS-PAGE were identified CP I'(containing reaction center of photosystem I and LHCP I antennae), CP I (reaction center of photosystem I) LHCP II** (oligoform of LHCP II), and LHCP II (photosystem II antennae, CP 26 and CP 29) by Bassis and Dunahay's procedures. Under our experimental condition, the CP I band was only observed in P. ginseng and the band intensity of LHCP II** in P ginseng was higher than in spinach and soybean. There were differences in the absorption and fluorescence spectra and chlorophyll a/b ratio of the CP-complex bands between P. ginseng and other Plants. The Polypeptidr content of P. ginseng thylakoid was lower than in spinach and soybean thylakoid, and the Polypeptide profiles of P. ginseng was low band intensity, especially about 29-35 kD, 55 kD, and 60 kD, compared to spinach and soybean. The inhibitory effects of 2,5-dimethylfuran, specific singlet oxygen ($^1O_2$) quencher, showed that singlet oxygen destroyed 60% of chl.a, 90% of chl.b and 70% of carotenoid in bleaching P. ginseng with leaf-burning disease.

  • PDF

Antioxidant properties of brownish natural dyeing agents from medicinal plant (갈색계 천연색소 추출물의 항산화 특성)

  • Kim, Yeon-Soon;Kwon, O-Jun;Suh, Hwa-Jin;Park, Shin
    • Food Science and Preservation
    • /
    • v.23 no.3
    • /
    • pp.387-392
    • /
    • 2016
  • The antioxidant activities of brownish natural dyeing agents, extracted from seven kinds of plants, were tested. Total polyphenol content, DPPH and ABTS radical scavenging activities, and singlet oxygen quenching effect were determined for hot water extracts and floral waters of plants. DPPH and ABTS radical scavenging activites increased with increasing amounts of the extracts from Uncaria gambir R. and Terminalia chebula R. displayed remarkable scavenging effects at concentrations below 0.1 mg/mL, in comparison with the positive control, ascorbic acid. However, antioxidant effects of the floral water, obtained from steam distillation of tested plants, were inefficient at concentration below 0.2 mg/mL. In particular, the natural dyeing agent effectively suppressed singlet oxygen induced by photosensitizer in in vitro assay systems. The concentrations ($IC_{50}$) required to exert 50% of singlet oxygen were 120 and $190{\mu}g/mL$ for hot water extracts from Uncaria gambir R. and Phellinus linteus, respectively. Among all the tested samples, the Uncaria gambir R. and Phellinus linteus extracts contained higher amount of total phenolic contents. The results suggest that naturally occurring dyeing agents are beneficial as natural antioxidants, encouraging further extensive studies.

Methyl Linoleate Oxidation via Electron Transfer in Competition with $^1O_2$ Formation Photosensitized N-Acetyl-L-Tryptophan 3-Methyl Indole

  • Yoon, Min-Joong;Song, Moon-Young;Cho, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.291-295
    • /
    • 1985
  • The efficiency of photosensitization of methyl linoleate (ML) oxidation by N-acetyl-L-trypophan(NAT) and 3-methyl indole(scatole) was markedly enhanced by increased concentration of ML in ethanol solution. The fluorescence intensities of sensitizers were observed to be quenched by ML, indicating that ML interacts with the indole excited singlet state. The inhibition of photosensitization by azide demonstrated a possible role of singlet oxygen in the photosensitization. The steady state kinetic treatment of azide inhibition of photosensitization was expected to show linear increase of reciprocal yield of ML oxidation product vs. reciprocal ML concentration at constant azide concentration, but the actual slope was nonlinear. This indicates another competing reaction involved in the photosensitization, As a possible competing reaction, electron transfer from ML to the excited sensitizer was proposed, since the measured fluorescence quenching rate constant closely resembled electron transfer rate constant determined from ML concentration dependence of oxidation product formation.

Antioxidant and photoprotective activities of various extracts from the roots of Rumex crispus L. (소리쟁이(Rumex crispus L.) 뿌리 추출물의 항산화 및 광피해 억제 효과)

  • Kim, Yeon-Soon;Suh, Hwa-Jin;Park, Shin
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.684-690
    • /
    • 2013
  • The antioxidant and photoprotective effects of various extracts from the roots of Rumex crispus L. were evaluated. The concentrations ($IC_{50}$) of various extracts required to exert a 50% reducing effect on a DPPH radical were found to be 0.005~0.093 mg/mL. The ethyl acetate extract showed a more remarkable effect than the positive control ascorbic acid. The concentrations ($QC_{50}$) of the butanol and ethyl acetate extracts required to exert a 50% reducing effect on the singlet oxygen $^1O_2$ were found to be 0.464 and 0.365 mg/mL, respectively. Both extracts were also found to protect the in vitro biological system from the detrimental effect of a singlet oxygen $^1O_2$ on type II photosensitization in E. coli and genomic DNA. Among all the tested extracts, the ethyl acetate and butanol extracts contained higher amounts of total phenolic contents. The results suggest that our study may contribute to the development of new bioactive products with potential applications to the reduction of photo-produced oxidative stress involving reactive oxygen species in living organisms.

Cellular Protective Effects and Mechanisms of Kaempferol and Nicotiflorin Isolated from Annona muricata against 1O2-induced Damage (그라비올라로부터 분리된 Kaempferol 및 Nicotiflorin의 1O2으로 유도된 세포손상에 대한 보호 효과와 그 메커니즘)

  • Park, So Hyun;Shin, Hyuk Soo;Lee, Nan Hee;Hong, In Kee;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • In this study, we investigated the cellular protective effects and mechanisms of nicotiflorin and its aglycone kaempferol isolated from Annona muricata. The protective effect of these components against $^1O_2$-induced cell damage was also studied by using L-ascorbic acid and (+)-${\alpha}$-tocopherol as controls. Kaempferol exhibited the most potent protective effect, followed by (+)-${\alpha}$-tocopherol and nicotiflorin. L-Ascorbic acid did not exhibit any cellular protective effects. To elucidate the mechanism underlying protective effects, the quenching rate constant of the singlet oxygen, free radical-scavenging activity, ROS-scavenging activity, and uptake ratio of the erythrocyte membrane were measured. The results showed that the cell membrane penetration is a key factor determining the cellular protective effect of kaempferol and its glycoside nicotiflorin. The result from L-ascorbic acid demonstrated that the cellular protective effect of a compound depends on its ability to penetrate the cell membrane and is independent of its antioxidant capacity. In addition, it is suggested that cellular protective effects of kaempferol and (+)-${\alpha}$-tocopherol depend not only on the cell permeability, but also on free radical- and ROS-scavenging activities. These results indicate that the cell permeability and free radical- and ROS- scavenging activities of antioxidants are major factors affecting the protection of cell membranes against the oxidative damage induced by photosensitization reaction.