• 제목/요약/키워드: single-phase voltage regulator

검색결과 15건 처리시간 0.022초

Series Compensated Step-down AC Voltage Regulator using AC Chopper with Transformer

  • Ryoo, H.J.;Kim, J.S.;Rim, G.H.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권3호
    • /
    • pp.277-282
    • /
    • 2005
  • This paper describes a step-down AC voltage regulator using an AC chopper and auxiliary transformer, which is a series connected to the main input. The detail design of the AC regulator, logic and PWM pattern of the AC chopper is described and the three-phase AC regulator using two single­phase AC choppers with a three transformer configuration is proposed for three-phase application. The proposed three-phase system has the advantages of lower system cost due to reduced switch number and gate driver circuit as well as advantages of decreased size and weight because it uses a series compensated scheme. The proposed AC regulator has many benefits such as fast voltage control, high efficiency and simple control logic. Experimental results indicate that it can be used as a step-down AC voltage regulator for power saving purposes very efficiently.

Common Arm을 이용한 새로운 고성능 단상 전압조정기에 관한 연구 (A Novel, High-performance Single-phase Voltage Regulator using Common Arm)

  • 박성준;박한웅;송달섭;이만형;김철우
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.369-375
    • /
    • 1999
  • This paper presents the novel low-performance single-phase voltage regulator which has common arm between the AC/DC and DC/AC power converters and adopts appropriate switching strategy, resulting in the reduction of the number of switching devices. Moreover, by introducing the method to replace the method to replace the conventional AC condenser in filter circuit with the new low-cost type using two DC condenser, the whole voltage regulator system can be more compact, simpler and less expensive than conventional ones. The fully digital controller is designed using high speed DSP, and the proposed system is validated through the experimental results.

  • PDF

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

PQ Control of Micro Grid Inverters with Axial Voltage Regulators

  • Chen, Yang;Zhao, Jinbin;Qu, Keqing;Li, Fen
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1601-1608
    • /
    • 2015
  • This paper presents a PQ control strategy for micro grid inverters with axial voltage regulators. The inverter works in the voltage-controlled mode and can help improve the terminal power quality. The inverter has two axial voltage regulators. The 1st regulator involves the output voltage amplitude and output impedance, while the 2nd regulator controls the output frequency. The inverter system is equivalent to a controllable voltage source with a controllable inner output impedance. The basic PQ control for micro grid inverters is easy to accomplish. The output active and reactive powers can be decoupled well by controlling the two axial voltages. The 1st axial voltage regulator controls the reactive power, while the 2nd regulator controls the active power. The paper analyses the axial voltage regulation mechanism, and evaluates the PQ decoupling effect mathematically. The effectiveness of the proposed control strategy is validated by simulation and experimental results.

AC-AC Voltage Regulator Conditioning Converter with Three Control Schemes

  • Ahmed, Nabil A.;Miyatake, Masafumi;Kang, Ju-Sung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.169-173
    • /
    • 2005
  • In this paper, a comparative study of modified phase-angle, extinction-angle, and pulse width modulation control techniques for the purpose of power factor improvement of single-phase AC-AC voltage regulators have been illustrated as applied to a single-phase ac voltage converter by an example of the widely used single-phase induction motor as a dynamic load. Observations on power factor, displacement factor and total harmonic distortion factor are described and discussed on the basis of the simulated and measured results of this work.

  • PDF

An Alternative Zero Voltage Switching Method of Boost Rectifier in Power Factor Correction Rectifier/Regulator System using DC Linked Energy Feedback Circuit

  • Roh, Chung-Wook;Kim, Bok-Man;Moon, Gun-Woo;Youn, Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.270-275
    • /
    • 1998
  • A new single phase power factor correction rectifier/regulator with dc linked energy feedback circuit is proposed, which is capable of achieving the zero voltage switching (ZVS) of a boost rectifier stage without any auxiliary switch. The performance of the proposed rectifier/regulator is demonstrated through a 200W, 90 KHz prototype. This proposed rectifier/regulator with dc linked energy feedback circuit is particularly suited for distributed power system applications

  • PDF

Power Control Strategies for Single-Phase Voltage-Controlled Inverters with an Enhanced PLL

  • Gao, Jiayuan;Zhao, Jinbin;He, Chaojie;Zhang, Shuaitao;Li, Fen
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.212-224
    • /
    • 2018
  • For maintaining a reliable and secure power system, this paper describes the design and implement of a single-phase grid-connected inverter with an enhanced phase-locked loop (PLL) and excellent power control performance. For designing the enhanced PLL and power regulator, a full-bridge voltage-controlled inverter (VCI) is investigated. When the grid frequency deviates from its reference values, the output frequency of the VCI is unstable with an oscillation of 2 doubling harmonics. The reason for this oscillation is analyzed mathematically. This oscillation leads to an injection of harmonics into the grid and even causes an output active power oscillation of the VCI. For eliminating the oscillation caused by a PLL, an oscillation compensation method is proposed. With the proposed method, the VCI maintains the original PLL control characteristics and improves the PLL robustness under grid frequency deviations. On the basis of the above analysis, a power regulator with the primary frequency and voltage modulation characteristics is analyzed and designed. Meanwhile, a small-signal model of the power loops is established to determine the control parameters. The VCI can accurately output target power and has primary frequency and voltage modulation characteristics that can provide active and reactive power compensation to the grid. Finally, simulation and experimental results are given to verify the idea.

A Smooth LVRT Control Strategy for Single-Phase Two-Stage Grid-Connected PV Inverters

  • Xiao, Furong;Dong, Lei;Khahro, Shahnawaz Farhan;Huang, Xiaojiang;Liao, Xiaozhong
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.806-818
    • /
    • 2015
  • Based on the inherent relationship between dc-bus voltage and grid feeding active power, two dc-bus voltage regulators with different references are adopted for a grid-connected PV inverter operating in both normal grid voltage mode and low grid voltage mode. In the proposed scheme, an additional dc-bus voltage regulator paralleled with maximum power point tracking controller is used to guarantee the reliability of the low voltage ride-through (LVRT) of the inverter. Unlike conventional LVRT strategies, the proposed strategy does not require detecting grid voltage sag fault in terms of realizing LVRT. Moreover, the developed method does not have switching operations. The proposed technique can also enhance the stability of a power system in case of varying environmental conditions during a low grid voltage period. The operation principle of the presented LVRT control strategy is presented in detail, together with the design guidelines for the key parameters. Finally, a 3 kW prototype is built to validate the feasibility of the proposed LVRT strategy.

전류 제어 기반 옵셋 전류를 이용한 단상 영구자석 동기 전동기의 회전자 자극 검출에 관한 연구 (A Study on Rotor Polarity Detection of SP-PMSM Using Offset Current Based on Current Control)

  • 박종원;황선환
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.1020-1026
    • /
    • 2019
  • 본 논문에서는 단상 영구자석 동기 전동기의 고속 센서리스 운전을 위한 회전자 자극 검출 알고리즘을 제안한다. 일반적으로 단상 영구자석 동기 전동기의 센서리스 운전은 오픈 루프 기동 후 특정 속도 영역에서 센서리스 운전으로 전환된다. 이와 같은 오픈 루프 기동 과정에서 단상 영구자석 동기 전동기의 일정한 회전 방향을 유지하기 위한 회전자 자극의 검출이 필수적이다. 본 논문에서는 자기적 비대칭을 갖는 단상 영구자석 동기 전동기의 특성을 고려하여 전류 제어기 기반의 옵셋 전류 및 고주파 전압 신호를 활용한 회전자 자극 검출 기법을 제안한다. 제안한 알고리즘은 다수의 실험을 통하여 회전자 자극 검출의 유효성과 유용성을 확인하였다.

비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구 (A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller)

  • 성의석;황선환
    • 전력전자학회논문지
    • /
    • 제20권3호
    • /
    • pp.201-208
    • /
    • 2015
  • The effects of dead-time and offset error, which cause output current distortion in single-phase grid-connected inverters are investigated this paper. Offset error is typically generated by measuring phase current, including the voltage unbalance of analog devices and non-ideal characteristics in current measurement paths. Dead-time inevitably occurs during generation of the gate signal for controlling power semiconductor switches. Hence, the performance of the grid-connected inverter is significantly degraded because of the current ripples. The current and voltage, including ripple components on the synchronous reference frame and stationary reference frame, are analyzed in detail. An algorithm, which has the proportional resonant controller, is also proposed to reduce current ripple components in the synchronous PI current regulator. As a result, computational complexity of the proposed algorithm is greatly simplified, and the magnitude of the current ripples is significantly decreased. The simulation and experimental results are presented to verify the usefulness of the proposed current ripple reduction algorithm.