• Title/Summary/Keyword: single-molecule sequencing

Search Result 12, Processing Time 0.026 seconds

Methylome Analysis of Two Xanthomonas spp. Using Single-Molecule Real-Time Sequencing

  • Seong, Hoon Je;Park, Hye-Jee;Hong, Eunji;Lee, Sung Chul;Sul, Woo Jun;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.500-507
    • /
    • 2016
  • Single-molecule real-time (SMRT) sequencing allows identification of methylated DNA bases and methylation patterns/motifs at the genome level. Using SMRT sequencing, diverse bacterial methylomes including those of Helicobacter pylori, Lactobacillus spp., and Escherichia coli have been determined, and previously unreported DNA methylation motifs have been identified. However, the methylomes of Xanthomonas species, which belong to the most important plant pathogenic bacterial genus, have not been documented. Here, we report the methylomes of Xanthomonas axonopodis pv. glycines (Xag) strain 8ra and X. campestris pv. vesicatoria (Xcv) strain 85-10. We identified $N^6$-methyladenine (6mA) and $N^4$-methylcytosine (4mC) modification in both genomes. In addition, we assigned putative DNA methylation motifs including previously unreported methylation motifs via REBASE and MotifMaker, and compared methylation patterns in both species. Although Xag and Xcv belong to the same genus, their methylation patterns were dramatically different. The number of 4mC DNA bases in Xag (66,682) was significantly higher (29 fold) than in Xcv (2,321). In contrast, the number of 6mA DNA bases (4,147) in Xag was comparable to the number in Xcv (5,491). Strikingly, there were no common or shared motifs in the 10 most frequently methylated motifs of both strains, indicating they possess unique species- or strain-specific methylation motifs. Among the 20 most frequent motifs from both strains, for 9 motifs at least 1% of the methylated bases were located in putative promoter regions. Methylome analysis by SMRT sequencing technology is the first step toward understanding the biology and functions of DNA methylation in this genus.

Next Generation Sequencing (NGS), A Key Tool to open the Personalized Medicine Era

  • Kwon, Sun-Il
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.4
    • /
    • pp.167-177
    • /
    • 2012
  • Next-Generation Sequencing (NGS) is a term that means post-Sanger sequencing methods with high-throughput sequencing technologies. NGS parallelizes the sequencing process, producing thousands or millions of sequences at once. The latest NGS technologies use even single DNA molecule as a template and measures the DNA sequence directly via measuring electronic signals from the extension or degradation of DNA. NGS is making big impacts on biomedical research, molecular diagnosis and personalized medicine. The hospitals are rapidly adopting the use of NGS to help to patients understand treatment with sequencing data. As NGS equipments are getting smaller and affordable, many hospitals are in the process of setting up NGS platforms. In this review, the progress of NGS technology development and action mechanisms of representative NGS equipments of each generation were discussed. The key technological advances in the commercialized platforms were presented. As NGS platforms are a great concern in the healthcare area, the latest trend in the use of NGS and the prospect of NGS in the future in diagnosis and personalized medicine were also discussed.

  • PDF

Recent advances in spatially resolved transcriptomics: challenges and opportunities

  • Lee, Jongwon;Yoo, Minsu;Choi, Jungmin
    • BMB Reports
    • /
    • v.55 no.3
    • /
    • pp.113-124
    • /
    • 2022
  • Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at single-molecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 ㎛ resolution. Unfortunately, neither imaging-based technology nor capture-based method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization.

Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing

  • Kim, Hyeongmin;Lee, Seung Jae;Jo, Ick-Hyun;Lee, Jinsu;Bae, Wonsil;Kim, Hyemin;Won, Kyungho;Hyun, Tae Kyung;Ryu, Hojin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.

Birth of an 'Asian cool' reference genome: AK1

  • Kim, Changhoon
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.653-654
    • /
    • 2016
  • The human reference genome, maintained by the Genome Reference Consortium, is conceivably the most complete genome assembly ever, since its first construction. It has continually been improved by incorporating corrections made to the previous assemblies, thanks to various technological advances. Many currently-ongoing population sequencing projects have been based on this reference genome, heightening hopes of the development of useful medical applications of genomic information, thanks to the recent maturation of high-throughput sequencing technologies. However, just one reference genome does not fit all the populations across the globe, because of the large diversity in genomic structures and technical limitations inherent to short read sequencing methods. The recent success in de novo construction of the highly contiguous Asian diploid genome AK1, by combining single molecule technologies with routine sequencing data without resorting to traditional clone-by-clone sequencing and physical mapping, reveals the nature of genomic structure variation by detecting thousands of novel structural variations and by finally filling in some of the prior gaps which had persistently remained in the current human reference genome. Now it is expected that the AK1 genome, soon to be paired with more upcoming de novo assembled genomes, will provide a chance to explore what it is really like to use ancestry-specific reference genomes instead of hg19/hg38 for population genomics. This is a major step towards the furthering of genetically-based precision medicine.

Next-generation Sequencing for Environmental Biology - Full-fledged Environmental Genomics around the Corner (차세대 유전체 기술과 환경생물학 - 환경유전체학 시대를 맞이하여)

  • Song, Ju Yeon;Kim, Byung Kwon;Kwon, Soon-Kyeong;Kwak, Min-Jung;Kim, Jihyun F.
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.2
    • /
    • pp.77-89
    • /
    • 2012
  • With the advent of the genomics era powered by DNA sequencing technologies, life science is being transformed significantly and biological research and development have been accelerated. Environmental biology concerns the relationships among living organisms and their natural environment, which constitute the global biogeochemical cycle. As sustainability of the ecosystems depends on biodiversity, examining the structure and dynamics of the biotic constituents and fully grasping their genetic and metabolic capabilities are pivotal. The high-speed high-throughput next-generation sequencing can be applied to barcoding organisms either thriving or endangered and to decoding the whole genome information. Furthermore, diversity and the full gene complement of a microbial community can be elucidated and monitored through metagenomic approaches. With regard to human welfare, microbiomes of various human habitats such as gut, skin, mouth, stomach, and vagina, have been and are being scrutinized. To keep pace with the rapid increase of the sequencing capacity, various bioinformatic algorithms and software tools that even utilize supercomputers and cloud computing are being developed for processing and storage of massive data sets. Environmental genomics will be the major force in understanding the structure and function of ecosystems in nature as well as preserving, remediating, and bioprospecting them.

Draft Genome Sequence of the White-Rot Fungus Schizophyllum Commune IUM1114-SS01

  • Kim, Da-Woon;Nam, Junhyeok;Nguyen, Ha Thi Kim;Lee, Jiwon;Choi, Yongjun;Choi, Jaehyuk
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.86-88
    • /
    • 2021
  • The monokaryotic strain, Schizophyllum commune strain IUM1114-SS01, was generated from a basidiospore of dikaryotic parental strain IUM1114. It even showed the decolorizing activities for several textile dyes much better than its parental strain. Based on the results of a single-molecule real-time sequencing technology, we present the draft genome of S. commune IUM1114-SS01, comprising 41.1 Mb with GC contents of the genome were 57.44%. Among 13,380 protein-coding genes, 534 genes are carbon hydrate-active enzyme coding genes.

Analysis of Hepatitis C Virus Genotypes and RNA Quantitative Values in Cheonan, Korea from 2007 to 2016

  • Bishguurmaa Renchindorj;Bo Kyeung Jung;Joowon Park
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.422-429
    • /
    • 2022
  • The hepatitis C virus (HCV) genome contains a positive-sense single-stranded RNA molecule, and it is classified into 8 genotypes and 87 subtypes. Globally, over 350,000 people die from liver cirrhosis and hepatocellular carcinoma caused by HCV each year. Here, the genotype distribution of HCV was estimated in the population in Cheonan, Korea using Sanger sequencing. In addition, the correlation between HCV RNA level and genotype was assessed using real-time polymerase chain reaction (PCR); similarly, the correlation of HCV RNA level with isolation year (2007-2016) was determined using 463 consecutive serum samples obtained from patients at Dankook University Hospital, Cheonan, Korea. In 2007, genotype 1b (54.2%) was predominant, followed by genotypes 2a (41.7%), 1a (2.1%) and 3a (2.1%); whereas in 2016, the predominant genotype was 2a (49.0%), followed by genotypes 1b (46.9%), 3b (2%), and 4a (2%). Neither age nor sex was correlated with HCV genotype. Furthermore, the mean HCV RNA level decreased significantly from 2012 to 2016 (p < 0.05). However, no significant correlations between genotype and HCV RNA level were found. Overall, the findings revealed that genotypes 2a and 1b were the most common in Cheonan, and the prevalence of HCV genotype 1b tended to decrease over the past decade.

Genomics and LC-MS Reveal Diverse Active Secondary Metabolites in Bacillus amyloliquefaciens WS-8

  • Liu, Hongwei;Wang, Yana;Yang, Qingxia;Zhao, Wenya;Cui, Liting;Wang, Buqing;Zhang, Liping;Cheng, Huicai;Song, Shuishan;Zhang, Liping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.417-426
    • /
    • 2020
  • Bacillus amyloliquefaciens is an important plant disease-preventing and growth-promoting microorganism. B. amyloliquefaciens WS-8 can stimulate plant growth and has strong antifungal properties. In this study, we sequenced the complete genome of B. amyloliquefaciens WS-8 by Pacific Biosciences RSII (PacBio) Single Molecule Real-Time (SMRT) sequencing. The genome consists of one chromosome (3,929,787 bp) and no additional plasmids. The main bacteriostatic substances were determined by genome, transcriptome, and mass spectrometry data. We thereby laid a theoretical foundation for the utilization of the strain. By genomic analysis, we identified 19 putative biosynthetic gene clusters for secondary metabolites, most of which are potentially involved in the biosynthesis of numerous bioactive metabolites, including difficidin, fengycin, and surfactin. Furthermore, a potential class II lanthipeptide biosynthetic gene cluster and genes that are involved in auxin biosynthesis were found. Through the analysis of transcriptome data, we found that the key bacteriostatic genes, as predicted in the genome, exhibited different levels of mRNA expression. Through metabolite isolation, purification, and exposure experiments, we found that a variety of metabolites of WS-8 exert an inhibitory effect on the necrotrophic fungus Botrytis cinerea, which causes gray mold; by mass spectrometry, we found that the main substances are mainly iturins and fengycins. Therefore, this strain has the potential to be utilized as an antifungal agent in agriculture.

Somatic Mutations of the ENPP2 (Autotaxin/lysoPLD) Gene in Breast Cancer

  • Song, Jae-Hwi;Kim, Jeong-Kyu;Noh, Ji-Heon;Jung, Kwang-Hwa;Eun, Jung-Woo;Kim, Chang-Jae;Bae, Hyun-Jin;Xie, Hong-Jian;Ahn, Young-Min;Lee, Sug-Hyung;Yoo, Nam-Jin;Lee, Jung-Young;Park, Won-Sang;Nam, Suk-Woo
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.262-266
    • /
    • 2007
  • ENPP2, a 125 kDa secreted lysophopholipase D which originally identified as a tumor-motogen, Autotaxin, enhances cellular locomotion, cell proliferation, angiogenesis and cell survival by generating the signal molecule lysophosphatic acid or sphingosine-1-phosphate. Previous studies have suggested that expression of Autotaxin is associated with invasive phenotype in advanced breast carcinomas. Thus, to determine whether genetic alterations of ENPP2 gene are involved in the development or progression of breast cancer, we analyzed its somatic mutation in 85 breast carcinomas by single-stranded conformational polymorphism and sequencing. Overall, six ENPP2 mutations were found (7.0%), comprising five missense and one nonsense mutation (s). To our knowledge, this is the first report on ENPP2 mutation in breast carcinoma, and the data indicate that ENPP2 is occasionally mutated in breast carcinomas, and suggest that ENPP2 mutation may contribute to the tumor development in some breast carcinomas.