• Title/Summary/Keyword: single-homed

Search Result 4, Processing Time 0.022 seconds

Mean Transfer Time for SCTP and TCP in Single-homed Environment considering Packet Loss (싱글홈드 환경에서 패킷 손실을 고려한 SCTP와 TCP의 평균 전송 시간)

  • Kim, Ju-Hyun;Lee, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.33 no.1
    • /
    • pp.233-248
    • /
    • 2008
  • Stream Control Transmission Protocol(SCTP) is a new transport protocol that is known to provide improved performance than Transmission Control Protocol(TCP) in multi-homing environment that is having two and more IP addresses. But currently single-homed computer is used primarily that is having one IP address. To identify whether mean transfer time for SCTP is faster that for TCP in single-homed environment considering packet loss, we make up real testbed regulating the bandwidth, delay time and packet loss rate on router and observe the transfer time. We write server and client applications to measure SCTP and TCP mean transfer time by C language. Analysis of these experimental results from the testbed implementation shows that mean transfer time of SCTP is not better than performance of TCP in single homed environment exceptional case. Main reasons of performance are that SCTP compared to TCP stops transmitting data by timeout and data transmission is often delayed when SACK congestion happens. The result of study shows that elaborate performance tuning is required in developing a new SCTP module or using a implemented SCTP module.

A Connection Management Protocol for Stateful Inspection Firewalls in Multi-Homed Networks

  • Kim, Jin-Ho;Lee, Hee-Jo;Bahk, Sae-Woong
    • Journal of Communications and Networks
    • /
    • v.10 no.4
    • /
    • pp.455-464
    • /
    • 2008
  • To provide network services consistently under various network failures, enterprise networks increasingly utilize path diversity through multi-homing. As a result, multi-homed non-transit autonomous systems become to surpass single-homed networks in number. In this paper, we address an inevitable problem that occurs when networks with multiple entry points deploy firewalls in their borders. The majority of today's firewalls use stateful inspection that exploits connection state for fine-grained control. However, stateful inspection has a topological restriction such that outgoing and incoming traffic of a connection should pass through a single firewall to execute desired packet filtering operation. Multi-homed networking environments suffer from this restriction and BGP policies provide only coarse control over communication paths. Due to these features and the characteristics of datagram routing, there exists a real possibility of asymmetric routing. This mismatch between the exit and entry firewalls for a connection causes connection establishment failures. In this paper, we formulate this phenomenon into a state-sharing problem among multiple fire walls under asymmetric routing condition. To solve this problem, we propose a stateful inspection protocol that requires very low processing and messaging overhead. Our protocol consists of the following two phases: 1) Generation of a TCP SYN cookie marked with the firewall identification number upon a SYN packet arrival, and 2) state sharing triggered by a SYN/ACK packet arrival in the absence of the trail of its initial SYN packet. We demonstrate that our protocol is scalable, robust, and simple enough to be deployed for high speed networks. It also transparently works under any client-server configurations. Last but not least, we present experimental results through a prototype implementation.

Performance Evaluation on SCTP multi-homing Feature (SCTP의 멀티호밍 특성에 대한 성능 평가)

  • Song, Jeong-Hwa;Lee, Mee-Jeong;Koh, Seok-Joo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.2
    • /
    • pp.245-252
    • /
    • 2004
  • Stream Control Transmission Protocol(SCTP) is a new connection-oriented, reliable delivery transport protocol operating on top of an unreliable connectionless packet service such as IP. It inherits many of the functions developed for TCP, including flow control and packet loss recovery functions. In addition, it also supports transport layer multihoming and multistreaming In this paper, we study the impact of multi-homing on the performance of SCTP. We first compare performance of single-homed SCTP. multi-homed SCTP, TCP Reno and TCP SACK. We, then describe potential flaw in the current SCTP retransmission policy, when SCTP host is multihomed. Our Results show that SCTP performs better than TCP Reno and TCP SACK due to several changes from TCP in its congestion control mechanism. In particular. multi-homed SCTP shows the best result among the compared schemes. Through experimentation for multi-homed SCTP, we found that the current SCTP retransmission policy nay deteriorate the perfomance when the retransmission path it worse than the original path. Therefore, the condition of retransmission path is a very important factor In SCTP performance and a proper mechanism would be required to measure the condition of the retransmission path.

An Adaptive Buffer Tuning Mechanism for striped transport layer connection on multi-homed mobile host (멀티홈 모바일 호스트상에서 스트라이핑 전송계층 연결을 위한 적응형 버퍼튜닝기법)

  • Khan, Faraz-Idris;Huh, Eui-Nam
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.199-211
    • /
    • 2009
  • Recent advancements in wireless networks have enabled support for mobile applications to transfer data over heterogeneous wireless paths in parallel using data striping technique [2]. Traditionally, high performance data transfer requires tuning of multiple TCP sockets, at sender's end, based on bandwidth delay product (BDP). Moreover, traditional techniques like Automatic TCP Buffer Tuning (ATBT), which balance memory and fulfill network demand, is designed for wired infrastructure assuming single flow on a single socket. Hence, in this paper we propose a buffer tuning technique at senders end designed to ensure high performance data transfer by striping data at transport layer across heterogeneous wireless paths. Our mechanism has the capability to become a resource management system for transport layer connections running on multi-homed mobile host supporting features for wireless link i.e. mobility, bandwidth fluctuations, link level losses. We show that our proposed mechanism performs better than ATBT, in efficiently utilizing memory and achieving aggregate throughput.

  • PDF