• Title/Summary/Keyword: single-gas permeation

Search Result 56, Processing Time 0.022 seconds

Al2O3 High Dense Single Layer Gas Barrier by Neutral Beam Assisted Sputtering (NBAS) Process

  • Jang, Yun-Seong;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.157-157
    • /
    • 2015
  • Recently, the growing interest in organic microelectronic devices including OLEDs has led to an increasing amount of research into their many potential applications in the area of flexible electronic devices based on plastic substrates. However, these organic devices require a gas barrier coating to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency OLEDs require an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}g/m^2day$. The Key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required ($1{\times}10^{-6}g/m^2day$) is the suppression of defect sites and gas diffusion pathways between grain boundaries. In this study NBAS process was introduced to deposit enhanced film density single gas barrier layer with a low WVTR. Fig. 1. shows a schematic illustration of the NBAS apparatus. The NBAS process was used for the $Al_2O_3$ nano-crystal structure films deposition, as shown in Fig. 1. The NBAS system is based on the conventional RF magnetron sputtering and it has the electron cyclotron resonance (ECR) plasma source and metal reflector. $Ar^+$ ion in the ECR plasma can be accelerated into the plasma sheath between the plasma and metal reflector, which are then neutralized mainly by Auger neutralization. The neutral beam energy is controlled by the metal reflector bias. The controllable neutral beam energy can continuously change crystalline structures from an amorphous phase to nanocrystal phase of various grain sizes. The $Al_2O_3$ films can be high film density by controllable Auger neutral beam energy. we developed $Al_2O_3$ high dense barrier layer using NBAS process. We can verified that NBAS process effect can lead to formation of high density nano-crystal structure barrier layer. As a result, Fig. 2. shows that the NBAS processed $Al_2O_3$ high dense barrier layer shows excellent WVTR property as a under $2{\times}10^{-5}g/m^2day$ in the single barrier layer of 100nm thickness. Therefore, the NBAS processed $Al_2O_3$ high dense barrier layer is very suitable in the high efficiency OLED application.

  • PDF

Preparation of Crack-free ZIF-7 Thin Films by Electrospray Deposition (정전분무법에 의한 결함없는 ZIF-7 박막의 제조)

  • Melgar, Victor Manuel Aceituno;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.23 no.4
    • /
    • pp.278-282
    • /
    • 2013
  • Zeolitic imidazolate frameworks (ZIFs) have been the focus of interest for their physical and chemical properties, especially, for their extraordinary gas separation properties. In this study, a novel and efficient method for the fabrication of continuous ZIF-7 film on ${\alpha}$-alumina substrate has been investigated. The electrospray deposition method was tried for the first time to prepare ZIF films directly without the necessity of prior substrate seeding. It has the advantage of depositing thin ZIF-7 films directly on the ${\alpha}$-alumina substrate by electrospraying the precursor solution. The ZIF-7 films have been characterized through XRD, FE-SEM, and single gas permeation tests.

Pore Size Control of Silica-Coated Alumina Membrane for $CO_2$ Separation ($CO_2$ 선택투과 분리를 위한 Silica 코팅 Alumina 막의 세공 제어)

  • 서봉국;김성수;김태옥
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.263-269
    • /
    • 1999
  • For effective $CO_2$ separation using pore size controlled membrane, silica was deposited in the mesopores of a $\gamma$-alumina film by chemical vapor deposition of tetraethoxysilane (TEOS) and phenyl-substituted ethoxysilanes at 773-873K. The membranes prepared with phenyl-substituted ethoxysilanes were calcined to remove the phenyl group and control the pore size. The gas permaselectivity of prepared membranes was evaluated by using $H_2$, $CO_2$ $N_2$, $CH_2$ and $C_3H_8$ single component and a mixture of $CO_2$ and $N_2$. The membranes produced using TEOS contained micropores having permselectivity only to hydrogen, but the phenyl-subsitituted ethoxysilane derived membranes possessed micorpores which are recognizable molecules of $CO_2$, $N_2$ and $CH_4$. In the diphenyl-diethoxysilane-derived membrane, the $CO_2$ permeance and selectivity of $CO_2$/$CH_4$ were $10^{-6} m^3(STP) \cdot m^{-2} \cdot s^{-1} \cdot kPa^{-1}$ and 11, respectively. Therefore, the use of phenyl-substituted ethoxysilane was effective in controlling micropore size for $CO_2$ separation.

  • PDF

A study on permeation of $CO_2-N_2-O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode (진공모드에서 NaY 제올라이트 막의 $CO_2-N_2-O_2$ 혼합기체의 투과거동 연구)

  • Jeong, Su Jung;Yeo, Jeong-Gu;Han, Moon Hee;Cho, Churl Hee
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.352-359
    • /
    • 2013
  • In the present study, $CO_2$ permeation through a hydrophilic NaY zeolite membrane was studied under permeate evacuation mode for $CO_2$ single gas, $CO_2-N_2$ and $CO_2-O_2$ binary mixtures, and $CO_2-N_2-O_2$ ternary mixture. It was reconfirmed that the $CO_2$ permeation was governed by surface diffusion and the $CO_2$ selectivity was induced from blocking effect of adsorbed $CO_2$ molecules. The $CO_2$ permeance measured in permeate evacuation mode was much lower than that done in He sweeping mode, but was comparable to that obtained under feed pressurization mode. The NaY zeolite membrane showed a considerable $CO_2$ separation for $14%CO_2-80%N_2-6%O_2$ mixture : $CO_2$ permeance was about $1{\times}10^{-7}mol/m^2secPa$ and $CO_2$ selectivity was more than 10. Therefore, it was concluded that NaY zeolite membrane was one of promising membranes for post-combustion CCS process.

Gas Separation Properties of Poly(ethylene oxide) and Poly(ethylene-co-vinyl acetate) Blended Membranes (Poly(ethylene oxide)와 Poly(ethylene-co-vinyl acetate)의 혼합막에 대한 기체분리 특성)

  • Lee, Hyun Kyung;Kang, Min Ji
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.147-153
    • /
    • 2017
  • In this study, we investigated permeation properties of single gas ($N_2$, $O_2$, $CO_2$) through membranes composed of poly(ethylene oxide) (PEO) and poly(ethylene-co-vinyl acetate) (EVA) blend. The prepared membranes showed no new absorbance peaks, which indicate the physical blending of PEO and EVA by FT-IR analysis. SEM observation showed that the crystalline phase of PEO decreased with increasing EVA content in the PEO/EVA mixed matrix. DSC analysis showed that the crystallinity of the PEO/EVA blend membrane decreased with increasing EVA content. Gas permeation experiment was performed with various feed pressure (4~8 bar). The permeability increased in the following order: $N_2$ < $O_2$ < $CO_2$. The permeability of $CO_2$ in PEO/EVA blend membranes were increased with increasing feed pressure, However, the permeability of $N_2$ and $O_2$ were independent of feed pressure. On the other hand, the permeability of all the gases in PEO/EVA blend membranes increased with increasing amorphous EVA content in semi-crystalline PEO. In particular, the blend membrane with 40 wt% EVA showed $CO_2$ permeability of 64 Barrer and $CO_2/N_2$ ideal selectivity of 61.5. The high $CO_2$ permeability and $CO_2/N_2$ ideal selectivity are attributed to strong affinity between the polar ether groups of PEO or the polar ester groups of EVA and polar $CO_2$.

Gas Permeation Characteristics of Membrane Using Poly(ether-b-amide)/ZIF-7 (Poly(ether-b-amide)/ZIF-7을 이용한 막의 기체투과 특성)

  • Yoon, Soong Seok;Hong, Se Ryeong
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.200-211
    • /
    • 2021
  • In this study, mixed matrix membranes were prepared by mixing the synthesized zeolitic imidazolate framework-7 (ZIF-7) with poly(ether-b-amide) 2533 (PEBAX2533). A single gas (N2, CO2) was permeated through the membrane to investigate the properties of the gas. Through FT-IR, XRD, and FE-SEM, the peaks and shapes of ZIF-7 were confirmed, and it was determined that the synthesis was successful. Through TGA, it was confirmed that ZIF-7 has excellent thermal stability and that when incorporated into the membrane, the thermal stability is improved compared to pure PEBAX2533. It was found that ZIF-7 synthesized through BET had excellent CO2 adsorption capacity and CO2/N2 adsorption selectivity showed a high value of about 49.64. For the gas permeation, as the ZIF-7 content in the mixed membrane increases, the N2 permeability decreases and the CO2 permeability slightly decreases, while the CO2/N2 selectivity steadily increases. In particular, when 20 wt% of ZIF-7 was added, the CO2 permeability did not decrease significantly and the CO2/N2 selectivity increased considerably, resulting in the performance approaching to the Robeson upper-bound.

Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation (이산화탄소 분리를 위한 폴리에틸렌글리콜계 폴리이미드 공중합체 비대칭 평판형 분리막의 제조 및 기체 투과 특성평가)

  • Park, Jeong Ho;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2015
  • In this study, we synthesized polyimide with high carbon dioxide gas transport property using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,3,5,6-tetramethyl-1,4-phenylenediamine and poly(ethylene glycol) bis(3-aminopropyl) terminated and then we calculated solubility parameter of synthesized polymer and non-solvent phase separation coefficient to determine proper solvent for preparation of asymmetric membrane, also we measured the viscosity of the polymer solution to check polymer contents in membrane solution and prepare asymmetric membrane with $LiNO_3$ additives. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. We confirmed that the carbon dioxide permeance of the membrane increased and the selectivity showed little change with decreasing of the volatile solvent contents.

Separation and Recovery of $SF_6$ Gas from $N_2/SF_6$ Gas Mixtures by using a Polymer Hollow Fiber Membranes (고분자 중공사 분리막을 이용한 $N_2/SF_6$ 혼합가스로부터 $SF_6$의 분리 및 회수)

  • Lee, Hyun-Jung;Lee, Min-Woo;Lee, Hyun-Kyung;Lee, Sang-Hyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.47-53
    • /
    • 2011
  • $SF_6$ (Sulfur hexafluoride) possesses high GWP (Global Warming Potential) as sepcified by the IPCC (Intergonvernmental Panel of Climate Change). Recently, the recovery-separtion of $SF_6$ research area, including permeation properties studies using various membrane's materials and the practical operation of recovery-separtion using membrane of waste $SF_6$ gas is in the initial state. The separation efficiency of a single $SF_6$ and waste $SF_6$ mixture was evaluated using a PSF (polysulfone), PC (tetra-bromo polycarbonate) and PI (polyimide) hollow fiber membranes. According to the results of single gases permeation properties, PI membrane has the highest permselectivity of $N_2$ gas in $N_2/SF_6$ gas. Under the condition of P=0.5 MPa, the highest concentration of recovered $SF_6$ is 95.6 vol % in the separation experiment of $SF_6/N_2$ mixture gas by PC membrane. Under the operation pressure of P=0.3 MPa at a fixed retentate flow rate fixed of 150 cc/min, the maximum recovery efficiency of $SF_6$ is up to 97.8% by PSF membrane. From the results above, it is thought that the separation and recovery technique of $SF_6$ gas using membrane will be used as the representative eco-technology in the $SF_6$ gas treatment in the future.

Mechanical and Oxygen Permeation Properties of Layered Double Hydroxide/Ethylene Vinyl Acetate Nanocomposite Membranes (Mg-Al Layered Double Hydroxide/Ethylene Vinyl Acetate 나노복합막의 기계적 특성과 기체투과 특성에 관한 연구)

  • Hwang, Ji-Young;Lee, Sang-Hyup;Lee, Jong-Suk;Hong, Se-Ryung;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.151-158
    • /
    • 2013
  • The effect of layered double hydroxides (LDH) on the gas separation properties of ethylene vinyl acetate copolymer was investigated. Mg-Al LDH/EVA nanocomposite membranes were prepared from solution intercalation using organically modified LDH (DS-LDH). Dodecyl sulfate (DS)-LDH was obtained by the intercalation of DS anion in the interlayer. The nanocomposite structure has been elucidated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). XRD pattern clearly shows that the DS-LDH layers are disorderly well dispersed in the EVA matrix. The maximum tensile strength and elongation of the LDH/EVA nanocomposite membrane were found with the LDH content 3 wt%. The thermal properties of nanocompostie membrane were enhanced by the incorporation of LDH in EVA matrix. Gas permeation of LDH/EVA nanocomposite membranes with LDH contents of 1, 3, 5 wt% was studied for $O_2$ and $CO_2$ single gases. The presence of 3 wt% LDH decreased $O_2$ permeability by up to 53% compared to the EVA membrane. In spite of barrier property of nanocomposite membrane, however, the gas permeability for $CO_2$ was increased due to its strong affinity with the residual OH groups on the LDH.

Effect of Al Content Variation on High Temperature Gas Nitriding in 13%Cr-0.16%C Stainless Steel (13%Cr-0.17%C 스테인리스강의 고온 가스질화에 미치는 Al 함량 변화의 영향)

  • Park, B.T.;Kim, J.M.;Kang, H.J.;Kong, J.H.;Kang, C.Y.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.6
    • /
    • pp.318-326
    • /
    • 2011
  • This study has been performed to investigate the effect of Al addition on High Temperature Gas Nitriding (HTGN) in 13%Cr-0.16%C stainless steel with different Al contents of 0.54%, 1.76% and 2.36%, respectively. HTGN treatment was carried out at $1100^{\circ}C$ for 1 hr, 5 hrs and 10 hrs. Nitrogen-permeated surface layers showed round type carbides of $Cr_{23}C_6$ and needle type nitrides of AlN in the matrix of martensite, representing 600~700 Hv. And the thickness of the surface layer increased with increasing Al content and HTGN treatment time. The inner region that was not permeated nitrogen showed chromium carbides in the mixed phase of martensite and ferrite for the 0.53% Al alloyed steel, however chromium carbides in the matrix of ferrite single phase were shown for the steels with the addition of 1.76%Al and 2.36%Al, representing the hardness of ~200 Hv. During nitrogen permeation from surface to the interior, substitutional elements of Cr, Al and Si moved toward the surface and interstitial element of carbon also moved from interior to the surface. This movement of alloying elements leads high concentration of these elements at the outmost surface, subsequently the lowest peak of substitutional elements were shown in the vicinity of near surface. After showing the lowest peak, the high concentration region of Al and C were formed due to the continuous movement of Al toward the surface. The long discontinuous precipitates of $Cr_{23}C_6$ and AlN were formed along the outmost surface owing to the high concentration of these alloying elements.