• Title/Summary/Keyword: single-crystalline au nanowire

Search Result 11, Processing Time 0.023 seconds

Structural Characteristic of One Dimensional Single Crystalline of InN Nanowires (1차원 InN 단결정 나노선의 구조특성에 대한 고찰)

  • Byeun, Yun-Ki;Chung, Yong-Keun;Lee, Sang-Hoon;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.4 s.299
    • /
    • pp.202-207
    • /
    • 2007
  • High-Quality 1-Dimensional InN single crystalline have been grown by Halide Vapor-Phase Epitaxy on the Au catalyst coated Si substrate using the vapor-liquid-solid growth mechanism. We have been grown 1-dimension InN nanowires having controlled the growth conditions for substrate temperature and gases flow rate. The grown InN nanowire of characteristics for morphologies, crystal structure, and element analysis were carried out by SEM, HR-TEM, and EDS respectively. And the defects of InN crystalline were analyzed by indexing of selective area diffraction pattern with attached HR-TEM. We have successfully obtained the defect-free 1-dimensional InN single crystalline nanowire at the atmosphere pressure.

High Aspect Single Crystalline Au Nanowire Electrode with an Atomically Smooth (111) Surface

  • Gang, Mi-Jeong;Gang, Ho-Seok;Gwak, Ju-Hyeon;Kim, Bong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.210-210
    • /
    • 2011
  • Ultrasmall electodes are of great importance for basic electrochemical study and applications. We fabricated single crystal (111) Au nanowire (NW) by growth mechanism on substrate without any catalyst. Consequently, these high aspect NW combined with tungsten microwire and the electrodes having NW tip on their end were obtained. These single crystal Au (111) NWs were characterized by electron microscope and electrochemical analysis. We show that precise electrochemical measurement could be possible on these NW electrode by obtaining underpotential deposition (UPD) and ferricyanide CV profiles on the electrode. The immersed depth of electrode into solution was controlled in micrometer scale by piezo-driven manipulator.

  • PDF

Synthesis of Au Nanowires Using S-L-S Mechanism (S-L-S 성장기구를 이용한 양질의 골드 나노선 합성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun;Cho, Jin-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.922-925
    • /
    • 2012
  • Single crystalline Au nanowires were successfully synthesized in a tube-type furnace. The Au nanowires were grown by vapor phase synthesis technique using solid-liquid-solid (SLS) mechanism on substrates of corning glass and Si wafer. Prior to Au nanowire synthesis, Au thin film served as both catalyst and source for Au nanowire was prepared by sputtering process. Average length of the grown Au nanowires was approximately 1 ${\mu}m$ on both the corning glass and Si wafer substrates, while the diameter and the density of which were dependent on the thickness of the Au thin film. To induce a super-saturated states for the Au particle catalyst and Au molecules during the Au nanowire synthesis, thickness of the Au catalyst thin film was fixed to 10 nm or 20 nm. Additionally, synthesis of the Au nanowires was carried out without introducing carrier gas in the tube furnace, and synthesis temperature was varied to investigate the temperature effect on the resulting Au nanowire characteristics.

A review on gold nanowire based SERS sensors for chemicals and biological molecules

  • Rashida Akter;Hyuck Jin Lee;Toeun Kim;Jin Woo Choi;Hongki Kim
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.201-210
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique for detecting and analyzing chemical and biological molecules at ultra-low concentrations. The effectiveness of SERS largely depends on structures with sub-10 nm gaps, prompting the proposal of various nanostructures as efficient SERS-active platforms. Among these, single-crystalline gold nanowires (AuNWs) are particularly promising due to their large dielectric constants, well-defined geometries, atomically smooth surfaces, and surface plasmon resonance across the visible spectrum, which produce strong SERS enhancements. This review comprehensively explores the synthesis, functionalization, and application of Au NWs in SERS. We discuss various methods for synthesizing AuNWs, including the vapor transport method, which influences their morphological and optical properties. We also review practical applications in chemical and biosensing, showcasing the adaptability of Au NWs-based SERS platforms in detecting a range of analytes, from environmental pollutants to biological markers. The review concludes with a discussion on future perspectives that aim to enhance sensor performance and broaden application domains, highlighting the potential of these sensors to revolutionize diagnostics and environmental monitoring. This review underscores the transformative impact of AuNW-based SERS sensors in analytical chemistry, environmental science, and biomedical diagnostics, paving the way for next-generation sensing technologies.

Synthesis and Applications of Noble Metal and Metal Silicide and Germanide 1-Dimensional Nanostructures

  • Yoon, Ha-Na;Yoo, Young-Dong;Seo, Kwan-Yong;In, June-Ho;Kim, Bong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2830-2844
    • /
    • 2012
  • This review covers recent developments in our group regarding the synthesis, characterization and applications of single-crystalline one-dimensional nanostructures based on a wide range of material systems including noble metals, metal silicides and metal germanides. For the single-crystalline one-dimensional nanostructures growth, we have employed chemical vapor transport approach without using any catalysts, capping reagents, and templates because of its simplicity and wide applicability. Au, Pd, and Pt nanowires are epitaxially grown on various substrates, in which the nanowires grow from seed crystals by the correlations of the geometry and orientation of seed crystals with those of as-grown nanowires. We also present the synthesis of numerous metal silicide and germanide 1D nanostructures. By simply varying reaction conditions, furthermore, nanowires of metastable phase, such as $Fe_5Si_3$ and $Co_3Si$, and composition tuned cobalt silicides (CoSi, $Co_2Si$, $Co_3Si$) and iron germanides ($Fe_{1.3}Ge$ and $Fe_3Ge$) nanowires are synthesized. Such developments can be utilized as advanced platforms or building blocks for a wide range of applications such as plasmonics, sensings, nanoelectronics, and spintronics.

Vertically Well-Aligned ZnO Nanowires on c-$Al_2O_3$ and GaN Substrates by Au Catalyst

  • Park, Hyun-Kyu;Oh, Myung-Hoon;Kim, Sang-Woo;Kim, Gil-Ho;Youn, Doo-Hyeob;Lee, Sun-Young;Kim, Sang-Hyeob;Kim, Ki-Chul;Maeng, Sung-Lyul
    • ETRI Journal
    • /
    • v.28 no.6
    • /
    • pp.787-789
    • /
    • 2006
  • In this letter, we report that vertically well-aligned ZnO nanowires were grown on GaN epilayers and c-plane sapphire via a vapor-liquid-solid process by introducing a 3 nm Au thin film as a catalyst. In our experiments, epitaxially grown ZnO nanowires on Au-coated GaN were vertically well-aligned, while nanowires normally tilted from the surface when grown on Au-coated c-$Al_2O_3$ substrates. However, pre-growth annealing of the Au thin layer on c-$Al_2O_3$ resulted in the growth of well-aligned nanowires in a normal surface direction. High-resolution transmission electron microscopy measurements showed that the grown nanowires have a hexagonal c-axis orientation with a single-crystalline structure.

  • PDF

Fabrication and characterization of NbTi-Au-NbTi Josephson junctions

  • Pyeong Kang, Kim;Heechan, Bang;Bongkeon, Kim;Yong-Joo, Doh
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.6-10
    • /
    • 2022
  • We report on the fabrication and measurements of metallic Josephson junctions (JJs) consisting of Au nanoribbon and NbTi superconducting electrodes. The maximum supercurrent density in the junction reaches up to ~ 3×105 A/cm2 at 2.5 K, much larger than that of JJ using single-crystalline Au nanowire. Temperature dependence of the critical current exhibits an exponential decay behavior with increasing temperature, which is consistent with a long and diffusive junction limit. Under the application of a magnetic field, monotonous decrease of the critical current was observed due to a narrow width of the Au nanoribbon. Our observatons suggest that NbTi/Au/NbTi JJ would be a useful platform to develop an integrated superconducing quantum circuit combined with the superconducting coplanar waveguide and ferromagnetic π junctions.

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF

Synthesis and characterization of $SnO_2$ nanowires on Si substrates in a thermal chemical vapor deposition process (열화학기상증착법을 이용한 Si 기판 위의 $SnO_2$ 나노와이어 제작 및 물성평가)

  • Lee, Deuk-Hee;Park, Hyun-Kyu;Lee, Sam-Dong;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.91-94
    • /
    • 2007
  • Single-crystalline $SnO_2$ nanowires were successfully grown on Si(001) substrates via vapor-liquid-solid mechanism in a thermal chemical vapor deposition. Large quantity of $SnO_2$ nanowires were synthesized at temperature ranges of $950{\sim}1000^{\circ}C$ in Ar atmosphere. It was found that the grown $SnO_2$ nanowires are of a tetragonal rutile structure and single crystalline by diffraction and transmission electron microscopy measurements. Broad emission located at about 600 m from the grown nanowires was clearly observed in room temperature photoluminescence measurements, indicating that the emission band originated from defect level transition into $SnO_2$ nanowires.

SnO2 Nanowire Networks on a Spherical Sn Surface: Synthesis and NO2 sensing properties (구형 Sn 표면의 SnO2 나노와이어 네트워크: 합성과 NO2 감지 특성)

  • Pham, Tien Hung;Jo, Hyunil;Vu, Xuan Hien;Lee, Sang-Wook;Lee, Joon-Hyung;Kim, Jeong-Joo;Heo, Young-Woo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.142.2-142.2
    • /
    • 2018
  • One-dimensional metal oxide nanostructures have attracted considerable research activities owing to their strong application potential as components for nanosize electronic or optoelectronic devices utilizing superior optical and electrical properties. In which, semiconducting $SnO_2$ material with wide-bandgap Eg = 3.6 eV at room temperature, is one of the attractive candidates for optoelectronic devices operating at room temperature [1, 2], gas sensor [3, 4], and transparent conducting electrodes [5]. The synthesis and gas sensing properties of semiconducting $SnO_2$ nanomaterials have become one of important research issues since the first synthesis of SnO2 nanowires. In this study, $SnO_2$ nanowire networks were synthesized on a basis of a two-step process. In step 1, Sn spheres (30-800 nm in diameter) embedded in $SiO_2$ on a Si substrate was synthesized by a chemical vapor deposition method at $700^{\circ}C$. In step 2, using the source of these Sn spheres, $SnO_2$ nanowire (20-40 nm in diameter; $1-10{\mu}m$ in length) networks on a spherical Sn surface were synthesized by a thermal oxidation method at $800^{\circ}C$. The Au layers were pre-deposited on the surface of Sn spherical and subsequently oxidized Sn surface of Sn spherical formed SnO2 nanowires networks. Field emission scanning electron microscopy and high-resolution transmission electron microscopy images indicated that $SnO_2$ nanowires are single crystalline. In addition, the $SnO_2$ nanowire is also a tetragonal rutile, with the preferred growth directions along [100] and a lattice spacing of 0.237 nm. Subsequently, the $NO_2$ sensing properties of the $SnO_2$ network nanowires sensor at an operating temperature of $50-250^{\circ}C$ were examined, and showed a reversible response to $NO_2$ at various $NO_2$ concentrations. Finally, details of the growth mechanism and formation of Sn spheres and $SnO_2$ nanowire networks are also discussed.

  • PDF