• Title/Summary/Keyword: single-chain Fv antibody

Search Result 40, Processing Time 0.029 seconds

Production of a Recombinant Anti-Human CD4 Single-Chain Variable-Fragment Antibody Using Phage Display Technology and Its Expression in Escherichia coli

  • Babaei, Arash;Zarkesh-Esfahani, Sayyed Hamid;Gharagozloo, Marjan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.529-535
    • /
    • 2011
  • Single-chain variable fragment (scFv) is a fusion protein of the variable regions of the heavy (VH) and light (VL) chains of immunoglobulin, connected with a short linker peptide of 10 to about 20 amino acids. In this study, the scFv of a monoclonal antibody against the third domain of human CD4 was cloned from OKT4 hybridoma cells using the phage display technique and produced in E. coli. The expression, production, and purification of anti-CD4 scFv were tested using SDS-PAGE and Western blot, and the specificity of anti-CD4 scFv was examined using ELISA. A 31 kDa recombinant anti-CD4 scFv was expressed and produced in bacteria, which was confirmed by SDS-PAGE and Western blot assays. Sequence analysis proved the ScFv structure of the construct. It was able to bind to CD4 in quality ELISA assay. The canonical structure of anti-CD4 scFv antibody was obtained using the SWISS_MODEL bioinformatics tool for comparing with the scFv general structure. To the best of our knowledge, this is the first report for generating scFv against human CD4 antigen. Engineered anti-CD4 scFv could be used in immunological studies, including fluorochrome conjugation, bispecific antibody production, bifunctional protein synthesis, and other genetic engineering manipulations. Since the binding site of our product is domain 3 (D3) of the CD4 molecule and different from the CD4 immunological main domain, including D1 and D2, further studies are needed to evaluate the anti-CD4 scFv potential for diagnostic and therapeutic applications.

Cloning and Characterization of a Single Chain Antibody to Glucose Oxidase from a Murine Hybridoma

  • Sellrie, Frank;Schenk, Jorg A.;Behrsing, Olaf;Drechsel, Oliver;Micheel, Burkhard
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.875-880
    • /
    • 2007
  • Glucose oxidase (GOD) is an oxidoreductase catalyzing the reaction of glucose and oxygen to peroxide and gluconolacton (EC 1.1.3.4.). GOD is a widely used enzyme in biotechnology. Therefore the production of monoclonal antibodies and antibody fragments to GOD are of interest in bioanalytics and even tumor therapy. We describe here the generation of a panel of monoclonal antibodies to native and heat inactivated GOD. One of the hybridomas, E13BC8, was used for cloning of a single chain antibody(scFv). This scFv was expressed in Escherichia coli XL1-blue with the help of the vector system pOPE101. The scFv was isolated from the periplasmic fraction and detected by western blotting. It reacts specifically with soluble active GOD but does not recognize denatured GOD adsorbed to the solid phase. The same binding properties were also found for the monoclonal antibody E13BC8.

The Effect of Growth Condition on a Soluble Expression of Anti-EGFRvIII Single-chain Antibody in Escherichia coli NiCo21(DE3)

  • Dewi, Kartika Sari;Utami, Ratna Annisa;Hariyatun, Hariyatun;Pratiwi, Riyona Desvy;Agustiyanti, Dian Fitria;Fuad, Asrul Muhamad
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.2
    • /
    • pp.148-156
    • /
    • 2021
  • Single-chain antibodies against epidermal growth factor receptor variant III (EGFRvIII) are potentially promising agents for developing antibody-based cancer treatment strategies. We described in our previous study the successful expression of an anti-EGFRvIII scFv antibody in Escherichia coli. However, we could also observe the formation of insoluble aggregates in the periplasmic space, limiting the production yield of the active product. In the present study, we investigated the mechanisms by which growth conditions could affect the expression of the soluble anti-EGFRvIII scFv antibody in small-scale E. coli NiCo21(DE3) cultures, attempting to maximize production. The secreted scFv molecules were purified using Ni-NTA magnetic beads and protein characterization was performed using SDS-PAGE and western blot analyses. We used the ImageJ software for protein quantification and determined the antigen-binding activity of the scFv antibody against the EGFRvIII protein. Our results showed that the highest percentage of soluble scFv expression could be achieved under culture conditions that combined low IPTG concentration (0.1 mM), low growth temperature (18℃), and large culture dish surface area. We found moderate-yield soluble scFv production in the culture medium after lactose-mediated induction, which was also beneficial for downstream protein processing. These findings were confirmed by conducting western blot analysis, indicating that the soluble, approximately 30-kDa scFv molecule was localized in the periplasm and the extracellular space. Moreover, the antigen-binding assay confirmed the scFv affinity against the EGFRvIII antigen. In conclusion, our study reveals that low-speed protein expression is preferable to obtain more soluble anti-EGFRvIII scFv protein in an E. coli expression system.

Expression of Intracellular Single Chain Antibody Specific to Hepatitis B Virus X Protein (B형 간염 바이러스의 X단백질에 대한 특이항체의 세포 내 발현)

  • Jin, Young Hee;Kim, Hyung-il;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2003
  • Background: Intracellular antibody specific to hepatitis B virus X protein (HBx) might be useful for studying the role of HBx in hepatocellular carcinogenesis and HBV replication. Methods: With variable region genes for H7 monoclonal anti-HBx Ab, we constructed a vector for bacterial expression of single chain Ab (scFv) and a vector for eukaryotic cell expression of it. The expression of H7 scFv and its binding activity against HBx was examined by immunoblotting and immunofluorescence microscopy. Results: H7 scFv expressed in bacterial cells retained reactivity to HBx. We demonstrated its intracytoplasmic expression in CosM6 eukaryotic cells. Conclusion: This is the first study showing the expression of intracellular anti-HBx Ab in eukaryotic cells. H7 scFv may be a good tool to study the function of HBx in HBV infection.

Affinity Maturation of an Anti-Hepatitis B Virus PreS1 Humanized Antibody by Phage Display

  • Yang, Gi-Hyeok;Yoon, Sun-Ok;Jang, Myung-Hee;Hong, Hyo-Jeong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.528-533
    • /
    • 2007
  • In a previous study we generated an anti-Hepatitis B Virus (HBV) preS1 humanized antibody (HzKR127) that showed in vivo HBV-neutralizing activity in chimpanzees. However, the antigen-binding affinity of the humanized antibody may not be sufficient for clinical use and thus affinity maturation is required for better therapeutic efficacy. In this study, phage display technique was employed to increase the affinity of HzKR127. All six amino acid residues (Glu95-Tyr96-Asp97-Glu98-Ala99-Tyr100) in the heavy (H) chain complementary-determining region 3 (HCDR3) of HzKR127 were randomized and phage-displayed single chain Fv (scFv) library was constructed. After three rounds of panning, 12 different clones exhibiting higher antigen-binding activity than the wild type ScFv were selected and their antigen-binding specificity for the preS1 confirmed. Subsequently, five ScFv clones were converted to whole IgG and subjected to affinity determination. The results showed that two clones (B3 and A19) exhibited an approximately 6 fold higher affinities than that of HzKR127. The affinity-matured humanized antibodies may be useful in anti-HBV immunotherapy.

The Improved Antigen-binding Activity of Biosimilar Remicade ScFv Antibodies by Fusion of the Leucine Zipper Domain (Leucine zipper도메인의 융합에 의한 바이오시밀러 레미케이드 Single-chain Fv 항체의 항원 결합력 개선)

  • Kim, Jin-Kyoo;Kim, Tae Hwan
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.1012-1020
    • /
    • 2020
  • Remicade is a therapeutic biosimilar natural antibody in which the mouse variable domain has been linked to the human constant domain. It is a chimeric monoclonal antibody specific to tumor necrosis factor-alpha (TNF-α) and has been developed for the treatment of rheumatoid arthritis. To investigate the biological activity of the Remicade antibody, we carried out a bioinformatics study using a protein data bank to characterize the TNF-α antigen binding mechanism of the Remicade natural antibody. Because the production of the Remicade antibody is often limited by genetic instability of the natural antibody-producing cell, we generated a Remicade single-chain variable domain fragment antibody (Remicade) in which a heavy chain variable domain (VH) is joined with a light chain variable domain (VL) by a polypeptide linker. Furthermore, Remicade was fused to a leucine zipper (RemicadeScZip) for higher production and higher antigen-binding activity than Remicade. The Remicade and Remicade ScZip were expressed in Escherichia coli and purified by a Ni+-NTA-agarose column. As expected, the purified proteins had migrated as 28.80 kDa and 33.96 kDa in sodium dodecyl sulfate-polyacrylamide electrophoresis. The TNF-α antigen binding activity of Remicade was not observed by ELISA and western blot. In contrast, RemicadeScZip showed antigen-binding activity. Additional bio-layer interferometry analysis confirmed the antigen-binding activity of RemicadeScZip, suggesting that the leucine zipper stabilized the folding of RemicadeScZip in a denatured condition and improved the TNF-α antigenbinding activity.

Production of the Recombinant Single Chain Anti-B Cell Lymphoma Antibody and Evaluation of Immunoreactivity (pET vector를 통한 유전자 재조합 단일사슬 항 B형 림프종 항체의 생산과 면역반응성 평가)

  • Jung, Jae-Ho;Choi, Tae-Hyun;Woo, Kang-Sun;Chung, Wee-Sup;Kim, Soo-Gwan;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.211-217
    • /
    • 2006
  • Purpose: Recombinant ScFv lym-1 was produced, using pET vector system for large scale production. Methods: ScFv lym-1 gene inserted pET-22b (+) vector, was expressed in E.coli BL-21 strain. ScFv lym-1 antibody extracted from periplasm, was purified with His-Taq column. To evaluated immunoreactivity with Raji cell, ScFv lym-1 was labeled with I-125 and I-125 ScFv lym-1 was purified with desalting column. Raji cell was injected into the C57BR/cdJ SCID mice. Gamma camera imaging were taken time point at 1, 8, 24, and 48 hr with 8 mm pinhole collimator. Results: An active scFv lym-1 could be produced in E. coli with soluble iron using PET vector system. Immuuoreaetivity and affinity constant of IgG lym-1 were 54% and $1.83{\times}10^9M^{-1}$, respectively, and those of scFv lym-1 were 53.7% and $1.46{\times}10^9M^{-1}$, respectively. Biodistribution of I-125 scFv lym-1 antibody showed faster clearance in blood, spleen, kidney and than I-125 IgG lym-1 antibody. Gamma camera image of I-125 scFv lym-1 antibody showed faster clearance and tumor targeting liver than I-125 IgG lym-1 antibody. Conclusions: In vitro properties of scFv lym-1 were similar to those of IgG lym-1. ScFv lym-1 showed faster blood clearance than IgG lym-1 There results suggest that scFv lym-1 antibody can be useful for tumor imaging agent.

Methods for rapid identification of a functional single-chain variable fragment using alkaline phosphatase fusion

  • Lee, Kyung-Woo;Hur, Byung-Ung;Song, Suk-Yoon;Choi, Hyo-Jung;Shin, Sang-Hoon;Cha, Sang-Hoon
    • BMB Reports
    • /
    • v.42 no.11
    • /
    • pp.731-736
    • /
    • 2009
  • The generation of functional recombinant antibodies from hybridomas is necessary for antibody engineering. However, this is not easily accomplished due to high levels of aberrant heavy and light chain mRNAs, which require a highly selective technology that has proven complicated and difficult to operate. Herein, we attempt to use an alkaline phosphate (AP)-fused form of single-chain variable fragment (scFv) for the simple identification of a hybridoma-derived, functional recombinant antibody. As a representative example, we cloned the scFv gene from a hybridoma-producing mouse IgG against branched-chain keto acid dehydrogenase complex-E2 (BCKD-E2) into an expression vector containing an in-frame phoA gene. Functional recombinant antibodies were easily identified by conventional enzyme-linked immunosorbent assay (ELISA) by employing scFv-AP fusion protein, which also readily serves as a valuable immuno-detective reagent.

Production and Characterization of a Recombinant Antibody Neutralizing Botulinum Neurotoxin A (보툴리눔 신경독소 A를 중화하는 재조합 항체의 제조와 특성 분석)

  • Park, Hong-Gyu;Choi, Mieyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.295-301
    • /
    • 2017
  • Botulinum neurotoxin (BoNT/A) is a neurotoxin that selectively attacks the peripheral cholinergic nerve endings. It is produced by Gram -positive, endospore-forming strict anaerobic bacteria, Clostridium botulinum. Since BoNT/A could be a biothreat agent, as well as a contaminator of food and water supplies, the development of sensitive assays for toxin detection and potent antitoxin for the treatment of intoxication is necessary. In this study, for the purpose of producing monoclonal antibodies (mAbs) that are capable of neutralizing Botulinum neurotoxin type A (BoNT/A), scFv (single-chain variable domain fragment) libraries from the rabbit antisera against BoNT/A was fused to a human IgG. The resulting recombinant scFvIgG antibody protein was expressed in stable cell lines and was purified using a protein A affinity chromatography. The efficacy of scFvIgG mAb was confirmed by ELISA and was evaluated for the neutralization of BoNT/A in vivo. Such an in vivo toxin neutralization assay was performed using mice. Although scFvIgG antibody proteins (10 ug) failed to fully protect the mice challenged with BoNT/A (100,000 $LD_{50}$), it significantly prolonged the survival time. These results suggest that scFvIgG mAb may be capable of neutralizing BoNT/A single-chain variable domain fragment.

Production and Characterization of Monoclonal and Recombinant Antibodies Against Antimicrobial Sulfamethazine

  • Yang, Zheng-You;Shim, Won-Bo;Kim, Min-Gon;Lee, Kyu-Ho;Kim, Keun-Sung;Kim, Kwang-Yup;Kim, Cheol-Ho;Ha, Sang-Do;Chung, Duck-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.571-578
    • /
    • 2007
  • A monoclonal antibody (mab) against the antimicrobial sulfamethazine was prepared and characterized by an indirect competitive enzyme-linked immunosorbent assay (IC-ELISA). Sulfamethazine in the range of 0.2 and 45ng/ml could be determined with the mab by IC-ELISA. cDNAs encoding a variable heavy chain and variable light chain of the mab were cloned to produce recombinant antibodies using phage display technology. Following phage rescue and three rounds of panning, a single-chain variable fragment (scFv) antibody with high sulfamethazine-binding affinity was obtained. ELISA analysis revealed that scFv antibody and parent mab showed similar, but not identical, characteristics. The $IC_{50}$ value by IC-ELISA with scFv antibody was 4.8ng/ml, compared with 1.6ng/ml with the parent mab. Performances of the assays in the presence of milk matrix were compared; the mab-based assay was less affected than the scFv-based assay. Sixty milk samples were analyzed by mab-based IC-ELISA, and four samples were sulfamethazine positive; these results were favorably correlated with those obtained by HPLC.