• 제목/요약/키워드: single-cell gel electrophoresis(SCGE: comet assay)

검색결과 22건 처리시간 0.018초

Protective Effects of a Herb, Menthae Herba, against Radiation-induced Oxidative DNA Damage

  • Jo, Sung-Kee;H, Heon-O;Uhee Jung;Kim, Sung-Ho;Byun, Myung-Woo
    • 한국식품저장유통학회:학술대회논문집
    • /
    • 한국식품저장유통학회 2003년도 제23차 추계총회 및 국제학술심포지움
    • /
    • pp.152-152
    • /
    • 2003
  • As utilization of radiation in medicine, industry and biochemical research increases, the protection against radiation damage has become an important issue. Natural products such as herbal medicines are beginning to receive attention as modifiers on the radiation response. In the present study, the protective effect of a herb, Menthae Herba, against radiation-induced DNA damage was evaluated using alkaline single-cell gel electrophoresis (SCGE; comet assay) in the mouse peripheral blood Iymphocytes and the micronucleus formation test in the Chinese hamster ovary (CHO) cells. The tail moment, which was a marker of DNA damage in the SCGE, and the frequency of micronuclei was decreased in groups treated with Mentae Herba extract before exposure to 200 cGy of gamma-ray. We also confirmed its activities to scavenge DPPH and hydroxyl radicals. These experiments demonstrated that Menthae Herba was effective at reducing the radiation-induced damage of DNA and scavenging free radicals. It is plausible that scavenging of free radicals by Menthae Herba may have played an important role in providing the protection against the radiation-induced damage to the DNA. These results indicated that Menthae Herba might be a useful radioprotector and that radical scavenging appears to be one of the mechanisms of radiation protection.

  • PDF

Comet Assay를 이용한 Flavonoids와 항산화 비타민의 인체임파구 세포 DNA 손상 보호 효과 (Protective Effect of Flavonoids on Lymphocyte DNA Damage Using Comet Assay)

  • 박유경;전은재;강명희
    • Journal of Nutrition and Health
    • /
    • 제36권2호
    • /
    • pp.125-132
    • /
    • 2003
  • The present study was attempted to investigate and compare the antioxidant potency of several well-know flavonoids, antioxidant vitamin and commercially available popular beverages. The antioxidant potency was assessed by the effect on reducing oxidative DNA damage of human lymphocytes. Cellular oxidative DNA damage was measured by SCGE (single-cell gel electrophoresis), also known as comet assay. Lymphocytes were pre-treated for 30 minutes with wide ranges of doses of apigenin, kaempferol, luteolin, myricetin, rutin, quercetin, $\alpha$-tocopherol (10,25,50,100,200,500,1000 $\mu$M) ,green tea extract or grape juice (10,50,100,250,500,1000 $\mu$g/mL) followed by a $H_2O$$_2$(100 $\mu$M) treatment for 5 min as an oxidative stimulus. The physiological function of each antioxidant substance on oxidative DNA damage was analyzed as tail moment (tail length $\times$ percentage migrated DNA in tail) and expressed as relative DNA damage score after adjusting by the level of control treatment. Cells treated with $H_2O$$_2$alone (positive control) had an extensive DNA damage compared with cells treated with phosphate buffered saline (PBS, negative control) or pre-treated with all the tested samples. Of all the six flavonoids, quercetin was the most potent antioxidant showing the lowest $ED_{50}$/ of 8.5 $\mu$g/mL (concentration to produce 50% protection of relative DNA damage). The antoxidant potency of individual flavonoids were ranked as follows in a decreasing order; luteolin (18.4 $\mu$g/mL), myricetin (19.0 $\mu$g/mL) , rutin (22.2 $\mu$g/mL) , apigenin (24,3 $\mu$g/mL) , kaempferol (25.5 $\mu$g/mL). The protective effect of $\alpha$-tocopherol was substantially lower (highest $ED_{50}$value of 55.0 $\mu$g/mL) than all the other flavonoids, while the protective effect was highest in green tea and grape juice with low ED5O value of 7.6 and 5.3, respectively. These results suggest that flavonoids, especially quercetin, and natural compounds from food product, green tea and grape juice, produced powerful anti-oxidative activities, even stronger than $\alpha$-tocopherol. Taken together, supplementation of antioxidants to lymphocytes followed by oxidative stimulus inhibited damage to cellular DNA, supporting a protective effect against oxidative damage induced by reactive oxygen species.