• Title/Summary/Keyword: single-axis control

Search Result 144, Processing Time 0.026 seconds

An experimental study on attitude control of spacecraft using roaction wheel (반작용 휠을 이용한 인공위성 지상 자세제어 실험 연구)

  • 한정엽;박영웅;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1334-1337
    • /
    • 1997
  • A spacecraft attitude control ground hardware simulator development is discussed in the paper. The simulator is called KT/KARI HILSSAT(Hardware-In-the Loop Simulator Single Axis Testbed), and the main structure consists of a single axis bearing and a satellite main body model on the bearing. The single axis tabel as ans experimental hardware simulator that evaluates performance and applicability of a satellite before evolving and/or confirming a mew or and old control logic used in the KOREASAT is developed. Attitude control of spaceraft by using reaction wheel is performed.

  • PDF

Proportional navigation guidance and error analysis of fast-rolling single-axis control missiles (단축조종 고속회전 유도탄의 비례항법유도 및 오차해석)

  • 전병을;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.482-485
    • /
    • 1996
  • We design a homing guidance law based on the proportional navigation for the fast-rolling, single-axis control missiles and analyse the misdistance of the designed guidance system. The guidance law includes a compensation scheme which compensates for the phase-shift between the commanded and achieved acceleration which is peculiar to the fast rolling airframe with single-axis control. In the error analysis of the guidance system, we calculate the misdistance with respect to the target maneuver on the 3-dimensional space via direct simulations. Also, we conduct adjoint simulation on the 2-dimensional plane in case that phase-shift is perfectly compensated. Finally we approximate the linear time-varying dynamics of the missile with autopilot to a linear time-invarient system, and as a result we can find the misdistance as a closed-form.

  • PDF

Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

  • Lee, Hee-Gyoun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.9-13
    • /
    • 2017
  • This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between $YBa_2Cu_3O_{7-y}$ (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

Development of Force Sensors for the Fingers of an Intelligent Robot's Hand (지능형 로봇손을 위한 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

Technology of single-axis solar tracking system and power generation increase (단축식 태양광 추적장치의 설계와 발전량 증대기술)

  • LEE, Jae-Jin;Lee, Kyo-Beum;Jeong, Kyu-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.212-217
    • /
    • 2020
  • The PV power generation system is a comprehensive system that transmits the power generated through a PV panel to a grid connection and is composed of a solar panel, a structure, and an inverter grid connection system. One technology to increase the amount of power generated involves changing the incident angle of sunlight. This study examined the structure and control of a single-axis tracking PV system that increases the amount of power generated by changing the incident angle. The core content is a single-axis control system and technology configured to rotate the solar structure in the east-west direction around the north-south axis. A solar structure that follows the sun from sunrise to sunset in the east-west direction needs to secure structural stability and solar tracking control performance. A single-axis tracking system can generate up to 25% more power.

Stabilization Control Method Development for Single Axis Unstable System Using SGCMG (SGCMG를 이용한 단축 불안정 시스템의 안정화 제어 기법 개발)

  • Lee, Junsik;Yi, Junyong;Yoo, Jihoon;Kim, Jichul;Cheon, Dongik;Oh, Hwa-Suk
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.12-17
    • /
    • 2013
  • Control Moment Gyroscope(CMG) is one of the most efficient momentum exchange devices for satellite attitude control and essential device for agile maneuver system. This paper presents the details of a designed Single Gimbal CMG with a constant speed momentum wheel and single axis attitude control unstable to stable. In order to keep the naturally unstable equivalent point, it should be controlling the gimbal constantly. The experimental data are compared with theoretical result and requirements are used to verify their performance specifications.

Verification of KAUSAT-2 Satellite Attitude Control Algorithm Using KAUSatSIM Simulator (KAUSatSIM을 이용한 한누리 2호 자세제어 알고리즘 검증)

  • Na, Hee-Seung;Lee, Byung-Hoon;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.514-523
    • /
    • 2008
  • This paper presents a single-axis simulator developed to verify the attitude control algorithm of KAUSAT-2 satellite. Named KAUSatSIM, the simulator is composed of a single-axis rotation table using an air-bearing that simulates a frictionless environment, as well as sensors and momentum wheel that was used on KAUSAT-2. The simulator can be utilized for verification of KAUSAT-2 attitude control algorithm, development of new algorithms, and verification of performance. Tests were performed on the single-axis rotation simulator using the momentum wheel in order to verify the attitude control algorithm of KAUSAT-2. Satisfactory test results were obtained by designing a wheel controller that employs the proportional-derivative control method. In addition, a propulsion system was added and tested for development of a new satellite attitude control algorithm.

An Experimental Study of a Single Axis Seesaw Attitude Control Consisting of Motor and Propeller (모터와 프로펠러로 구성된 시소형 1축 자세 제어 실험에 관한 연구)

  • Kim, Jae-Nam;Roh, Min-Shik;Song, Jun-Beom;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • In this research, a single-axis attitude control test bed is developed, and simulation and tests experiments are performed, as a preliminary research of a quad-rotor aerial vehicle development. A single-axis test bed with seesaw configuration is manufactured using two motors and propellers, and the aerodynamic parameters are derived by thrust tests. The response of the system is estimated with Matlab/Simulink, and experiments are performed with attitude control computer and an attitude sensor onboard the test bed. Comparing the results of simulated and tested data, factors of steady-state errors during experiments are found, and performances of used attitude control algorithm and the control computer were verified. In these process, essential preliminary data for attitude control of a quad-rotor unmanned aerial vehicle were acquired.

MODELING OF A REPULSIVE TYPE MAGNETIC BEARING FOR FIVE AXIS CONTROL INCLUDING EDDY CURRENT EFFECT

  • Ohji, T.;Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.625-629
    • /
    • 1998
  • So far a single-axis controlled repulsive type magnetic bearing system have been designed and fabricated in our laboratory employing the repulsive forces operating between the stator and rotor permanent magnet for levitation. The radial axis is uncontrolled passive one. The higher speed of operation is limited due to the vibration along the uncontrolled axis and the increase of control current due to eddy current interference. This paper will discuss a detailed modeling of the repulsive type magnetic bearing system for five axis control including the eddy current effect and the method of reduction of eddy current effect. Simulation results using Matlab will be presented.

  • PDF

Robust Slewing Control of A Flexible Space Structure using Sliding Surface (슬라이딩 평면을 이용한 유연우주비행체의 강인 선회제어)

  • Kim, Jin Hyeong;Hong, Chang Ho;Seok, Jin Yeong;Bang, Hyo Chung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2003
  • This paper presents a robust slewing control of a flexible space structure based on sliding surface design. A sliding surface is designed for a single-axis rest-to-rest slewing in view of target angle, target angular velocity, and root monent of the flexible appendage. In comparison with the Lypunov control law, both controllers guarantee the stability and command tracking capabilities for nominal system. It is also shown that the designed control law provides further robustness to internal/external uncertainties. Extending the results of a single-axis maneuver, a sliding mode control law was sought for an arbitrary three-axis maneuver. Quaternion was used to determine the attitude of a space structure and sliding surfaces were designed for each axis, thereby a robust control law was derived considering the coupling effects between each rotational axis during the maneuver. Several numerical examples were demonstrated to show the effectiveness of the designed control law.