• Title/Summary/Keyword: single-GNSS

Search Result 80, Processing Time 0.028 seconds

A Modified Klobuchar Model Reflecting Characteristics of Ionospheric Delay Error in the Korea Region

  • Dana Park;Young Jae Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.121-128
    • /
    • 2023
  • When calculating the user's position using satellite signals, the signals originating from the satellite pass through the ionosphere and troposphere to the user. In particular, the ionosphere delay error that occurs when passing through the ionosphere delays when the signal is transmitted, generating a pseudorange error and position error at a large rate. Therefore, to improve position accuracy, it is essential to correct the ionosphere layer error. In a receiver capable of receiving dual frequency, the ionosphere error can be eliminated through a double difference, but in a single frequency receiver, an ionosphere correction model transmitted from a Global Navigation Satellite System (GNSS) satellite is used. The popularly used Klobuchar model is designed to improve performance globally. As such, it does not perform perfectly in the Korea region. In this paper, the characteristics of the delay in the ionosphere in the Korean region are identified through an analysis of 10 years of data, and an improved ionosphere correction model for the Korean region is presented using the widely employed Klobuchar model. Through the proposed model, vertical position error can be improved by up to 40% relative to the original Klobuchar model in the Korea region.

Based on Multiple Reference Stations Ionospheric Anomaly Monitoring Algorithm on Consistency of Local Ionosphere (협역 전리층의 일관성을 이용한 다중 기준국 기반 전리층 이상 현상 감시 기법)

  • Song, Choongwon;Jang, JinHyeok;Sung, Sangkyung;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.550-557
    • /
    • 2017
  • Ionospheric delay, which affect the accuracy of GNSS positioning, is generated by electrons in Ionosphere. Solar activity level, region and time could make change of this delay level. Dual frequency receiver could effectively eliminate the delay using difference of refractive index between L1 to L2 frequency. But, Single frequency receiver have to use limited correction such as ionospheric model in standalone GNSS or PRC(pseudorange correction) in Differential GNSS. Generally, these corrections is effective in normal condition. but, they might be useless, when TEC(total electron content) extremely increase in local area. In this paper, monitoring algorithm is proposed for local ionospheric anomaly using multiple reference stations. For verification, the algorithm was performed with specific measurement data in Ionospheric storm day (20. Nov. 2003). this algorithm would detect local ionospheric anomaly and improve reliability of ionospheric corrections for standalone receiver.

Federated Filter Approach for GNSS Network Processing

  • Chen, Xiaoming;Vollath, Ulrich;Landau, Herbert
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.171-174
    • /
    • 2006
  • A large number of service providers in countries all over the world have established GNSS reference station networks in the last years and are using network software today to provide a correction stream to the user as a routine service. In current GNSS network processing, all the geometric related information such as ionospheric free carrier phase ambiguities from all stations and satellites, tropospheric effects, orbit errors, receiver and satellite clock errors are estimated in one centralized Kalman filter. Although this approach provides an optimal solution to the estimation problem, however, the processing time increases cubically with the number of reference stations in the network. Until now one single Personal Computer with Pentium 3.06 GHz CPU can only process data from a network consisting of no more than 50 stations in real time. In order to process data for larger networks in real time and to lower the computational load, a federated filter approach can be considered. The main benefit of this approach is that each local filter runs with reduced number of states and the computation time for the whole system increases only linearly with the number of local sensors, thus significantly reduces the computational load compared to the centralized filter approach. This paper presents the technical aspect and performance analysis of the federated filter approach. Test results show that for a network of 100 reference stations, with the centralized approach, the network processing including ionospheric modeling and network ambiguity fixing needs approximately 60 hours to process 24 hours network data in a 3.06 GHz computer, which means it is impossible to run this network in real time. With the federated filter approach, only less than 1 hour is needed, 66 times faster than the centralized filter approach. The availability and reliability of network processing remain at the same high level.

  • PDF

Performance Assessment of GBAS Ephemeris Monitor for Wide Faults (Wide Fault에 대한 GBAS 궤도 오차 모니터 성능 분석)

  • Junesol Song;Carl Milner
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.2
    • /
    • pp.189-197
    • /
    • 2024
  • Galileo is a European Global Navigation Satellite System (GNSS) that has offered the Galileo Open Service since 2016. Consequently, the standardization of GNSS augmentation systems, such as Satellite Based Augmentation System (SBAS), Ground Based Augmentation System (GBAS), and Aircraft Based Augmentation System (ABAS) for Galileo signals, is ongoing. In 2023, the European Union Space Programme Agency (EUSPA) released prior probabilities of a satellite fault and a constellation fault for Galileo, which are 3×10-5 and 2×10-4 per hour, respectively. In particular, the prior probability of a Galileo constellation fault is significantly higher than that for the GPS constellation fault, which is defined as 1×10-8 per hour. This raised concerns about its potential impact on GBAS integrity monitoring. According to the Global Positioning System (GPS) Standard Positioning Service Performance Standard (SPS PS), a constellation fault is classified as a wide fault. A wide fault refers to a fault that affects more than two satellites due to a common cause. Such a fault can be caused by a failure in the Earth Orientation Parameter (EOP). The EOP is used when transforming the inertial axis, on which the orbit determination is based, to Earth Centered Earth Fixed (ECEF) axis, accounting for the irregularities in the rotation of the Earth. Therefore, a faulty EOP can introduce errors when computing a satellite position with respect to the ECEF axis. In GNSS, the ephemeris parameters are estimated based on the positions of satellites and are transmitted to navigation satellites. Subsequently, these ephemeris parameters are broadcasted via the navigation message to users. Therefore, a faulty EOP results in erroneous broadcast ephemeris data. In this paper, we assess the conventional ephemeris fault detection monitor currently employed in GBAS for wide faults, as current GBAS considers only single failure cases. In addition to the existing requirements defined in the standards on the Probability of Missed Detection (PMD), we derive a new PMD requirement tailored for a wide fault. The compliance of the current ephemeris monitor to the derived requirement is evaluated through a simulation. Our findings confirm that the conventional monitor meets the requirement even for wide fault scenarios.

Multi-band Micropole Antenna Design Using Impedance Change (임피던스 변화를 이용한 다중대역 마이크로폴 안테나 설계)

  • Park, Jaehong;Kim, Hyunhee;Lee, Kyungchang;Hwang, Yeongyeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2021
  • A multi-band, compact, and complex vehicle roof antenna has become important in terms of car exterior design and multi-functions which include Radio, DAB/DMB, SXM, GNSS, Telematics, and V2X. In this paper, we propose a compact multi-band V2X pole-type roof antenna. Using impedance change characteristic, a single pole antenna which has multiband such as radio, DAB/DMB, telematics, and V2X band is proposed. With two patch antennas for GNSS and SXM, the dimension of a multiband roof antenna is 131x63x37mm only.

Single Antenna Based GPS Signal Reception Condition Classification Using Machine Learning Approaches

  • Sanghyun Kim;Seunghyeon Park;Jiwon Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2023
  • In urban areas it can be difficult to utilize global navigation satellite systems (GNSS) due to signal reflections and blockages. It is thus crucial to detect reflected or blocked signals because they lead to significant degradation of GNSS positioning accuracy. In a previous study, a classifier for global positioning system (GPS) signal reception conditions was developed using three features and the support vector machine (SVM) algorithm. However, this classifier had limitations in its classification performance. Therefore, in this study, we developed an improved machine learning based method of classifying GPS signal reception conditions by including an additional feature with the existing features. Furthermore, we applied various machine learning classification algorithms. As a result, when tested with datasets collected in different environments than the training environment, the classification accuracy improved by nine percentage points compared to the existing method, reaching up to 58%.

Assessing the Real-time Positioning Accuracy of Low-cost GPS Receiver using NTRIP-based Augmentation Service (Ntrip 기반 보정서비스를 활용한 저가 GPS 수신기의 실시간 측위 정확도 평가)

  • Lee, Yong Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.3
    • /
    • pp.31-39
    • /
    • 2015
  • This paper presents the static and kinematic positioning accuracy by the real-time GPS positioning modes of the low-cost GPS receivers using NTRIP-based augmentation service. For this, acquires both the raw measurements data of the field tests by LEA 6T GPS module of u-blox AG, and correction communication via NTRIP caster with RTKLIB as an open source program for GNSS solution. With computing the positions of the check points and road tracks by six kinds of GPS positioning modes which are Single, SBAS, DGPS, PPP, RTK, and TCP/IP_RTK, compared these results to the reference position of the check points. The position error average and rmse of the static test by GPS L1 RTK surveying showed $N=0.002m{\pm}0.001m$, $E=0.004m{\pm}0.001m$ in horizontal plane, and $h=-0.116m{\pm}0.003m$ in vertical, these results are very closed to the coordinates with the geodetic receiver. Especially, in case of the kinematic test with obstacles located on both sides of road, the computed track with ambiguity fixing showed very similar trajectory considerably from VRS network RTK mode. And also, evaluate and verify the performance of the TCP/IP_RTK mode developed based on TCP/IP protocol.

A EM-Log Aided Navigation Filter Design for Maritime Environment (해상환경용 EM-Log 보정항법 필터 설계)

  • Jo, Minsu
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.198-204
    • /
    • 2020
  • This paper designs a electromagnetic-log (EM-Log) aided navigation filter for maritime environment without global navigation satellite system (GNSS). When navigation is performed for a long time, Inertial navigation system (INS)'s error gradually diverges. Therefore, an integrated navigation method is used to solve this problem. EM-Log sensor measures the velocity of the vehicle. However, since the measured velocity from EM-Log contains the speed of the sea current, the aided navigation filter is required to estimate the sea current. This paper proposes a single model filter and interacting multiple (IMM) model filter methods to estimate the sea current and analyzes the influence of the sea current model on the filter. The performance of the designed aided navigation filter is verified using a simulation and the improvement rate of the filter compared to the pure navigation is analyzed. The performance of single model filter is improved when the sea current model is correct. However, when the sea current model is incorrect, the performance decreases. On the other hands, IMM model filter methods show the stable performance compared to the single model.

Implementation and Performance Analysis of Multi-GNSS Signal Collection System using Single USRP

  • Park, Kwi Woo;Choi, Yun Sub;Lee, Min Joon;Lee, Sang Jeong;Park, Chansik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • In this paper, a system that can collect GPS L1 C/A, GLONASS G1, and BDS B1I signals with single front-end receiver was implemented using a universal software radio peripheral (USRP) and its performance was verified. To acquire the global navigation satellite system signals, hardware was configured using USRP, antenna, external low-noise amplifier, and external oscillator. In addition, a value of optimum local oscillator frequency was selected to sample signals from three systems with L1-band with a low sampling rate as much as possible. The comparison result of C/N0 between the signal collection system using the proposed method and commercial receiver using double front-end showed that the proposed system had 0.7 ~ 0.8dB higher than that of commercial receiver for GPS L1 C/A signals and 1 ~ 2 dB lower than that of commercial receiver for GLONASS G1 and BDS B1I. Through the above results, it was verified that signals collected using the three systems with a single USRP had no significant error with that of commercial receiver. In the future, it is expected that the proposed system will be combined with software-defined radio (SDR) and advanced to a receiver that has a re-configuration channel.

Long-term Analysis of Availability and Accuracy Variation of GPS Ionospheric Delay Model (GPS 전리층 모델의 장기간 가용성 및 정확도 변화 분석)

  • Jeongrae Kim;Yongrae Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.841-848
    • /
    • 2023
  • The Klobuchar ionospheric model included in global positioning system (GPS) navigation messages provides ionospheric correction information to single-frequency users. This ionospheric model accuracy has a significant impact on the accuracy of navigation solutions. We examine the GPS navigation messages from 1993 to 2022 and analyze their accuracy, presence of coefficients and accuracy of the Klobuchar model. Early GPS navigation messages often did not include ionospheric data, and even when they did include ionospheric models, the accuracy was often quite low. From 2002, when the accuracy of the ionospheric model was stabilized, until 2022, the accuracy of the ionospheric model is analyzed by comparing it with the ionospheric model of the International GNSS Service (IGS). Changes in accuracy per day and per year and accuracy differences along geomagnetic latitude are analyzed.