• Title/Summary/Keyword: single wire

Search Result 335, Processing Time 0.026 seconds

A Study on the Ground Fault Current Distribution by Single Phase-to-Neutral Fault Tests in Power Distribution System (배전계통에서 1선 지락고장 시험에 의한 지락고장전류 분류에 관한 연구)

  • Kim, Kyung-Chul;You, Chang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.7
    • /
    • pp.37-44
    • /
    • 2013
  • Phase to ground faults are possibly one of the maximum number of faults in power distribution system. During a ground fault the maximum fault current and neutral to ground voltage will appear at the pole nearest to the fault. Distribution lines are consisted of three phase conductors, an overhead ground wire and a multigrounded neutral line. In this paper phase to neutral faults were staged at the specified concrete pole along the distribution line and measured the ground fault current distribution in the ground fault current, three poles nearest to the fault point, overhead ground wire and neutral line. A simplified equivalent circuit model for the distribution system under case study calculated by using MATLAB gives results very close to the ground fault current distribution yielded by field tests.

Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid (유체 내 전기선폭발법에 의한 은 나노입자 유체의 제조 및 특성)

  • Park, E.J.;Bac, L.H.;Kim, J.S.;Kwon, Y.S.;Kim, J.C.;Choi, H.S.;Chung, Y.H.
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.217-222
    • /
    • 2009
  • This paper presents a novel single-step method to prepare the Ag nanometallic particle dispersed fluid (nanofluid) by electrical explosion of wire in liquid, deionized water (DI water). X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM) were used to investigate the characteristics of the Ag nanofluids. Zeta potential was also used to measure the dispersion properties of the as-prepared Ag nanofluid. Pure Ag phase was detected in the nanofluids using water. FE-SEM analysis shows that the size of the particles formed in DI water was about 88 nm and Zeta potential value was about -43.68 without any physical and chemical treatments. Thermal conductivity of the as-prepared Ag particle dispersed nanofluid shows much higher value than that of pure DI water.

Effect of Mechanical Properties by a Long Term Operation in High Capacity and Low Sag Conductor ( II ) (경년열화가 증용량 저이도 송전선의 기계적특성에 미치는 영향 (II))

  • Kim Shang-Shu;Kim Byung-Geol;Sin Goo-Yong;Lee Dong-Il;Min Byung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.100-106
    • /
    • 2006
  • Today, restricted energy sources, environmental considerations and the high cost of transporting fuel have limited the number and location of available power plant sites. The pressures resulting from these conditions have tended to require the construction of long, high-capacity, high-voltage power lines. it's used to adapt to STACIR/AW(Super Thermal-resistant Aluminum alloy Conductors, aluminum-clad Invar-Reinforced) conductor for coping with these situations. STACIR/AW conductor was formed by the combination of INVAR/AW as the core for low sag and super thermal-resistant aluminum alloy conductor for current capacity increase. increase of temperature by current capacity and long span lines make the susceptible to the deterioration of thermo-mechanical properties(conductivity, tensile strength, E-modulus and twist property et al). In the present work, changes of thermo-mechanical properties with aging have been studied in STACIR/AW $410 mm^2$ conductor with forms of single wire and strand wire.

Development of Stainless Steel Loose Tube Optical Ground Wire with 144 Single Mode Fibers (144심용 초다심 SSLT OPGW 개발)

  • Baik, S.Y.;Kim, K.M.;Kim, S.W.;Kim, D.W.;Lee, I.H.;Sohn, K.I.;Lee, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.395-398
    • /
    • 2001
  • Recently, the increasing need for internet and the activation of hiring business of communication line makes the demand for OPGW cable which can construct the optical communication network in the basis of existing overhead power transmission line. Especially, the demand is focused on the high fiber count OPGW due to high capacity transmission. In step with the trend toward high fiber count cable we have developed the Stainless Steel Loose Tube type OPGW within which have 144core firstly in KOREA. This paper describes the cable design and manufacturing process which gives the stable operation in very severe conditions and the long-term reliability test results conducted in according to dominant specification IEEE Std. 1138-1194.

  • PDF

A Failure Analysis on the Broken Last Blade of 30MW Steam Turbine (30MW 증기터빈 최종단 회전익 파단 사고 분석)

  • Kim, S.B.;Kim, I.C.;Han, S.W.;Jun, C.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.5-15
    • /
    • 2007
  • In the recently released accident-investigation report on blade failure, almost 70% of blade failures was found at low pressure turbine blades, and it is well known that main cause is due to the vibration modes. This paper describes the systematic approach on the root cause of the blade failure at L 0 stage, 30MW single flow industrial steam turbine which had tripped by high vibration after ten-month commercial operation. A fracture was found at the only one damping wire hole of 59 blades, and crack was detected at three damping wire holes by NDT. According to the analysis result for the crack fracture surface and the chain of the sequential operational events, we come to the conclusion that a typical high cycle fatigue is the most dominant factor caused to the blade failure, the resonance frequency margin was narrowed by the cut damping wire and the high cycle vibration was amplified, and then the blade was broken at once by the centrifugal force when the crack reached the critical size.

  • PDF

Velocity Measurement Technique in a Narrow Passage by Hot-wire Anemometer (열선유속계를 이용한 좁은 유로 내 유속 측정법)

  • Kim, Won-Kap;Han, Seong-Ho;Choi, Young-Don
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.2
    • /
    • pp.191-201
    • /
    • 2007
  • It was noted by the several researchers that the voltage outputs in response to a single yawed hot-wire sensor in a flow perpendicular to the axis deviate from the theoretical voltage output by King's law and Jorgensen's relation. This study noticed that the calibration coefficients of original Grande's method are not constant and fairly sensitive to the radial angle (${\alpha}_{R}$). For more accuracy, this study interpolated the parameters of the Grande relation as a function of radial angle and compared velocity components with ones by Jorgensen and original Grande relation in the calibration jet flow. Finally, as a test case, 3-dimensional turbulent flows of the inlet plane of 180 degree bend are measured and compared the velocity components by above three methods and showed the characteristics of the flows.

Comparison of Voltage Unbalance Factor for Line and Phase Voltage (선간전압과 상전압에 대한 전압불평형율의 비교)

  • Kim Jong-Gyeum;Park Young-Jeen;Lee Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.403-407
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, voltage unbalance is generated at the user's 3-phase 4-wire distribution systems with single & three phase. Voltage unbalance is mainly affected by load system rather than power system. Unbalanced voltage will draws a highly unbalanced current and results in the temperature rise and the low output characteristics at the machine. It is necessary to analyse correct voltage unbalance factor for reduction of side effects in the industrial sites. Voltage unbalance is usually defined by the maximum percent deviation of voltages from their average value, by the method of symmetric components or by the expression in a more user-friendly form which requires only the three line voltage readings. If the neutral point is moved by the unbalanced load at the 3-phase 4-wire system. Line and phase voltage unbalance leads to different results due to zero-sequence component. So that it is difficult to analyse voltage unbalance factor by the conventional analytical method, This paper presents a new analytical method for phase and line voltage unbalance factor in 4-wire systems. Two methods indicate exact results.

The development of unlined underwear design (홑겹 속옷 디자인 개발)

  • Lee, Eun-Ji;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.6
    • /
    • pp.852-871
    • /
    • 2018
  • The purpose of this study is to suggest a direction for the development of unlined underwear design. A style for unlined underwear can take strong points and compensate for weak points by using the characteristics of wire brassieres and bralettes. As a method for research, we based our study on literature and data such as previous studies, professional books, internet articles, and fashion magazines. As a result of analyzing the brassiere's status in lines like 'FOREVER 21' and 'VICTORIA'S SECRET', we determined that 'FOREVER 21' reflects the trend of unlined style underwear, and 'VICTORIA'S SECRET' has both unlined and wire brassieres to make breast correction. In the case of unlined style brassieres, a wire is put in order to gather the chest for compromising comfort and correction. In order to express the possibility of expressing various feelings even in unlined style, Design 1 lets everyone know that unlined underwear can be very comfortable as a daily, not used only occasionally for events. Design 2 demonstrates that besides the artificial feeling of using the strap for a special day or event, it can be expressed naturally by using the lace as it is. Design 3 expresses the luxurious and sexy, rather than the low-grade decadent sexy, by using the feeling of the single layer lace and the pearl decoration for wedding and honeymoon.

Correction of the Proximal Intertarsal Instability in a Dog

  • Jung, Yunsoo;Lee, Ho-hyun;Yun, Sungho;Kwon, Young-sam
    • Journal of Veterinary Clinics
    • /
    • v.36 no.3
    • /
    • pp.166-168
    • /
    • 2019
  • A 22-month-old female mongrel dog weighing 4.8 kg was referred with chief complaint of bite wounds and lameness. The patient showed non-weight bearing lameness on left hindlimb and lateral instability of intertarsal joint. On radiograph, proximal intertarsal luxation between calcaneus and fourth tarsal bone was diagnosed. To imitate the long collateral and calcaneoquartal ligament, bone tunnels were drilled in the distal calcaneus and proximal fifth metatarsal bone. The figure-eight suture was placed with 0.5 mm cerclage wire through the predrilled holes. At 2 weeks after surgery, the lameness of hindlimb was still present. However, the patient had weight bearing lameness for 4 weeks after operation and was able to walk and run without lameness at 5 weeks after surgery. This case report explains the successful correction of intertarsal luxation with a single figure of eight wire suture in case of luxation to the intertarsal joint.

Numerical Studies on Submerged Arc Welding Process

  • Kiran, Degala Ventaka;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • A quantitative understanding on the effect of the welding conditions on weld joint dimensions and weld thermal cycle is difficult through experimental studies alone. The experimental realization of temperature distribution in the weld pool is proved to be extremely difficult due to the small size of welds, high peak temperature and steep temperature gradients in weld pool. This review deals with the heat transfer and fluid flow analysis to understand the parametric influence of a single wire submerged arc welding (SAW) and multi-wire SAW processes on the weld bead dimensions, temperature and fluid flow distribution in the weldment.