• Title/Summary/Keyword: single source localization

Search Result 29, Processing Time 0.027 seconds

Spatially Mapped GCC Function Analysis for Multiple Source and Source Localization Method (공간좌표로 사상된 GCC 함수의 다 음원에 대한 해석과 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.415-419
    • /
    • 2010
  • A variety of methods for sound source localization have been developed and applied to several applications such as noise detection system, surveillance system, teleconference system, robot auditory system and so on. In the previous work, we proposed the sound source localization using the spatially mapped GCC functions based on TDOA for robot auditory system. Performance of the proposed one for the noise effect and estimation resolution was verified with the real environmental experiment under the single source assumption. However, since multi-talker case is general in human-robot interaction, multiple source localization approaches are necessary. In this paper, the proposed localization method under the single source assumption is modified to be suitable for multiple source localization. When there are two sources which are correlated, the spatially mapped GCC function for localization has three peaks at the real source locations and imaginary source location. However if two sources are uncorrelated, that has only two peaks at the real source positions. Using these characteristics, we modify the proposed localization method for the multiple source cases. Experiments with human speeches in the real environment are carried out to evaluate the performance of the proposed method for multiple source localization. In the experiments, mean value of estimation error is about $1.4^{\circ}$ and percentage of multiple source localization is about 62% on average.

Identification of multiple sources in a plate structure using pre-filtering process for reduction of interference wave

  • Lee, S.K.;Moon, Y.S.;Park, J.H.
    • Smart Structures and Systems
    • /
    • v.8 no.2
    • /
    • pp.219-237
    • /
    • 2011
  • This paper presents novel research into the source localization of multiple impacts. Source localization technology for single impact loads in a plate structure has been used for health monitoring. Most of research on source localization has been focused only on the localization of single impacts. Overlapping of dispersive waves induced by multiple impacts and reflection of those waves from the edge of the plate make it difficult to localize the sources of multiple impacts using traditional source localization technology. The method solving the overlapping problem and the reflection problem is presented in the paper. The suggested method is based on pre-signal processing technology using band pass filter and optimal filter. Results from numerical simulation and from experimentation are presented, and these verify the capability of the proposed method.

The effect of model parameters on single dipole source tracing in EEG (모델 변수가 EEG의 Single Dipole Source 추정에 끼치는 영향에 관한 연구)

  • 박기범;박인호;김동우;배병훈;김수용;박찬영;김신태
    • Progress in Medical Physics
    • /
    • v.5 no.1
    • /
    • pp.41-53
    • /
    • 1994
  • The accurate localization of electrical sources in the brain is one of the most important questions in EEG, especially in the analysis of evoked responses and of epileptiform spike activity. A detailed simulation study of single dipole source estimation based on EEG is given in this paper. The effects of dipole model parameters on single dipole source tracing in EEG are examined in some detail using the Monte Carlo simulation. The error of source localization is found to be greatly influenced by how the electrodes are distributed over the head and the number of them.

  • PDF

Source Localization of Single Impact Based on Higher Order Time Frequency (고차-시간 주파수 기술을 이용한 평판에서의 충격 위치추적)

  • Moon, Yoo-Sung;Lee, Sang-Kwon;Yang, Hong-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this paper is to present the method of identifying the impact location on the plate. This basic research has the future purpose to achieve the human-interaction technology based on the signal processing, piezoelectric materials, and wave propagation. The present work concerning the location identification of a single impact on the plate simulated the waveform numerically generated by impact force and applied the SWFOM(sliced Wigner higher fourth order moment) to the waveform to get the arrival time differences due to impact force between three sensors attached to the plate. The simulated signal is useful to get the information for time interval for the only direct wave. This information is used the source localization by using experimental work. The measured signal is also used for source localization of a single impact based on the higher order time frequency as a novel work.

The Influence of the Number of Electrodes, the Position and Direction of a Single Dipole on the Relation Between S/N ratio and EEG Dipole Source Estimation Errors (뇌전위의 단일 쌍극자 모델에서 전극의 개수, 쌍극자의 위치 및 방향이 S/N과 쌍극자 추정 오차사이의 관계에 미치는 영향에 관한 시뮬레이션 연구)

  • 김동우;배병훈
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.71-76
    • /
    • 1994
  • In the source localization using single dipole model, the influence of the number of electrodes, the position and direction of a single dipole on the relation between S/W ratio and dipole parameter estimation errors is important. Monte Carlo simulation was used to investigate this influence. The forward problem was calculated using three spherical shell model, and dipole parameters were optimized by means of simplex method. As the number of electrodes became large, as the dipole went from midbrain to cortex, and as the direction of dipole changed from radial to tangential, the average and standard deviation of estimation errors became small.

  • PDF

Impact Localization of a Composite Plate Using a Single Transducer and Spatial Focusing Signal Processing Techniques (단일 센서와 공간집속 신호처리 기술을 이용한 복합재 판에서의 충격위치 결정)

  • Cho, Sungjong;Jeong, Hyunjo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.715-722
    • /
    • 2012
  • A structural health monitoring (SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal (TR) and inverse filtering (IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.

  • PDF

Closed-form Nonlinear Least-Squares Source Localization from Time-Difference of Arrival Measurements in Planar Space (평면공간에서 다중 센서간 도달 시간차를 이용한 해석적인 최소제곱오차 음원 위치 추정 방법)

  • Shin, Dong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.694-699
    • /
    • 2011
  • A closed-form technique is presented for estimating a single source location from a set of noisy time delay measurements between distributed sensors. The localization formula is derived from nonlinear least squares minimization over the unknowns of target range and bearing in polar coordinates. Computer simulation results are provided for the purpose of performance analysis. Constrained least squares minimization method with prior source location information is also discussed.

Sound Source Localization Method Using Spatially Mapped GCC Functions (공간좌표로 사상된 GCC 함수를 이용한 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • Sound source localization method based on the time delay of arrival(TDOA) is applied to many research fields such as a robot auditory system, teleconferencing and so on. When multi-microphones are utilized to localize the source in 3 dimensional space, the conventional localization methods based on TDOA decide the actual source position using the TDOAs from all microphone arrays and the detection measure, which represents the errors between the actual source position and the estimated ones. Performance of these methods usually depends on the number of microphones because it determines the resolution of an estimated position. In this paper, we proposed the localization method using spatially mapped GCC functions. The proposed method does not use just TDOA for localization such as previous ones but it uses spatially mapped GCC functions which is the cross correlation function mapped by an appropriate mapping function over the spatial coordinate. A number of the spatially mapped GCC functions are summed to a single function over the global coordinate and then the actual source position is determined based on the summed GCC function. Performance of the proposed method for the noise effect and estimation resolution is verified with the real environmental experiment. The mean value of estimation error of the proposed method is much smaller than the one based on the conventional ones and the percentage of correct estimation is improved by 30% when the error bound is ${\pm}20^{\circ}$.

Effects of Gradient Switching Noise on ECD Source Localization with the EEG Data Simultaneously Recorded with MRI (MRI와 동시에 측정한 뇌전도 신호로 전류원 국지화를 할 때 경사자계 유발 잡음의 영향 분석)

  • Lee H. R.;Han J. Y.;Cho M. H.;Im C. H.;Jung H. K.;Lee S. Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.2
    • /
    • pp.108-115
    • /
    • 2003
  • Purpose : To evaluate the effect of the gradient switching noise on the ECD source localization with the EEG data recorded during the MRI scan. Materials and Methods : We have fabricated a spherical EEG phantom that emulates a human head on which multiple electrodes are attached. Inside the phantom, electric current dipole(ECD) sources are located to evaluate the source localization error. The EEG phantom was placed in the center of the whole-body 3.0 Tesla MRI magnet, and a sinusoidal current was fed to the ECD sources. With an MRI-compatible EEG measurement system, we recorded the multi channel electric potential signals during gradient echo single-shot EPI scans. To evaluate the effect of the gradient switching noise on the ECD source localization, we controlled the gradient noise level by changing the FOV of the EPI scan. With the measured potential signals, we have performed the ECD source localization. Results : The source localization error depends on the gradient switching noise level and the ECD source position. The gradient switching noise has much bigger negative effects on the source localization than the Gaussian noise. We have found that the ECD source localization works reasonably when the gradient switching noise power is smaller than $10\%$ of the EEG signal power. Conclusion : We think that the results of the present study can be used as a guideline to determine the degree of gradient switching noise suppression in EEG when the EEG data are to be used to enhance the performance of fMRI.

  • PDF

Source Localization Based on Independent Doublet Array (독립적인 센서쌍 배열에 기반한 음원 위치추정 기법)

  • Choi, Young Doo;Lee, Ho Jin;Yoon, Kyung Sik;Lee, Kyun Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.164-170
    • /
    • 2014
  • A single near-field sounde source bearing and ranging method based on a independent doublet array is proposed. In the common case of bearing estimation method, unform linear array or uniform circular array are used. It is constrained retaining aperture because of array structure to estimate the distance of the sound source. Recent using independent doublet array sound source's bearing and distance esmtimation method is proposed by wide aperture. It is limited to the case doublets are located on a straight line. In this paper, we generalize the case and estimate the localization of a sound source in the various array structure. The proposed algorithm was verified performance through simulation.