• 제목/요약/키워드: single side wall

검색결과 70건 처리시간 0.03초

연직 유공벽의 수두손실 결정을 위한 수치해석 (Numerical Analysis on the Determination of Head Loss by Perforated Vertical Walls)

  • 전인식;이성엽;박경수;안동근
    • 한국해안해양공학회지
    • /
    • 제19권3호
    • /
    • pp.194-204
    • /
    • 2007
  • 흐름이 연직유공벽을 통과할 때 발생하는 수두손실을 수치해석과 수리실험을 통하여 고찰하였다. 수치 해석에 대해서는 유공벽 전 후의 검사체적에 연속방정식, 모멘텀 방정식, 그리고 에너지 방정식을 적용하였으며 주어진 하류 쪽 수심과 유속에 대하여 상류 쪽 수심 및 유공벽 수두손실을 계산할 수 있는 무차원 관계식을 유도 하였다. 수리실험은 단일유공판과 삼중유공판에 대하여 각각 수행하였다. 단일유공판에 대한 계산결과와 실험결과를 비교하여 유공부 오리피스에서 연직 선형 제트류의 수축계수가 개구율뿐만 아니라 하류 쪽 Froude 수에도 의존함을 밝혔으며, 실험결과에 근거하여 수두손실을 계산하기 위한 실험식을 제시하였다. 단일유공판의 실험식을 삼중유공판에 대하여 하류에서 상류 쪽으로 축차적으로 적용한 결과, 예측치와 실험결과가 대체적으로 잘 일치함을 확인하였다.

단일 첨가제를 이용한 고종횡비 TSV의 코발트 전해증착에 관한 연구 (A Study on the Cobalt Electrodeposition of High Aspect Ratio Through-Silicon-Via (TSV) with Single Additive)

  • 김유정;이진현;박기문;유봉영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.140-140
    • /
    • 2018
  • The 3D interconnect technologies have been appeared, as the density of Integrated Circuit (IC) devices increases. Through Silicon Via (TSV) process is an important technology in the 3D interconnect technologies. And the process is used to form a vertically electrical connection through silicon dies. This TSV process has some advantages that short length of interconnection, high interconnection density, low electrical resistance, and low power consumption. Because of these advantages, TSVs could improve the device performance higher. The fabrication process of TSV has several steps such as TSV etching, insulator deposition, seed layer deposition, metallization, planarization, and assembly. Among them, TSV metallization (i.e. TSV filling) was core process in the fabrication process of TSV because TSV metallization determines the performance and reliability of the TSV interconnect. TSVs were commonly filled with metals by using the simple electrochemical deposition method. However, since the aspect ratio of TSVs was become a higher, it was easy to occur voids and copper filling of TSVs became more difficult. Using some additives like an accelerator, suppressor and leveler for the void-free filling of TSVs, deposition rate of bottom could be fast whereas deposition of side walls could be inhibited. The suppressor was adsorbed surface of via easily because of its higher molecular weight than the accelerator. However, for high aspect ratio TSV fillers, the growth of the top of via can be accelerated because the suppressor is replaced by an accelerator. The substitution of the accelerator and the suppressor caused the side wall growth and defect generation. The suppressor was used as Single additive electrodeposition of TSV to overcome the constraints. At the electrochemical deposition of high aspect ratio of TSVs, the suppressor as single additive could effectively suppress the growth of the top surface and the void-free bottom-up filling became possible. Generally, copper was used to fill TSVs since its low resistivity could reduce the RC delay of the interconnection. However, because of the large Coefficients of Thermal Expansion (CTE) mismatch between silicon and copper, stress was induced to the silicon around the TSVs at the annealing process. The Keep Out Zone (KOZ), the stressed area in the silicon, could affect carrier mobility and could cause degradation of the device performance. Cobalt can be used as an alternative material because the CTE of cobalt was lower than that of copper. Therefore, using cobalt could reduce KOZ and improve device performance. In this study, high-aspect ratio TSVs were filled with cobalt using the electrochemical deposition. And the filling performance was enhanced by using the suppressor as single additive. Electrochemical analysis explains the effect of suppressor in the cobalt filling bath and the effect of filling behavior at condition such as current type was investigated.

  • PDF

회전자계 역수신 코일을 이용한 관벽의 자기공명 영상 (Magnetic Resonance Imaging of Lumen Wall using Quadrature-typed Inside-out Receiver Coil)

  • 문치웅;조종운
    • 대한의용생체공학회:의공학회지
    • /
    • 제22권5호
    • /
    • pp.385-392
    • /
    • 2001
  • 본 연구에서는 회전자계역수신코일(quadrature typed inside-out receiver coil)을 제작하고 이를 이용하여 코일 바깥 영역인 팬텀 관벽에 대한 자기공명영상(Magnetic Resonance Imaging, 이하 MRI라 함)을 얻었다. 자기공명영상법에 있어서 역 솔레노이드코일이나 8극 코일과 같은 기존의 역수신코일(inside-out receiver coil)은 영상영역(Imaging region)이 좁을 뿐만 아니라 영상영역 내의 영상신호가 불균일 (inhomogeneous)하다는 단점들이 있었다. 본 연구에서는 이들을 보완하면서 신호대잡음비(S/N ratio)도 이론적으로 약 1.4배 높일 수 있는 회전자계역수신코일(quadratic inside-out receiver coil)을 제안하여 관벽의 영상을 얻을 수 있는 코일을 개발하였다. 코일은 두 개의 안장코일 (saddle coil)을 서로 수직 방향으로 배치하여 서로 간섭을 일으키지 않으면서 최대의 신호를 수신할 수 있게 하였다. 코일에 대한 컴퓨터 모의실험(simulation)을 8극코일. 단일안장코일과 회전자계코일에 대해서 수행하였고 이들 각각 코일을 제작하여 팬텀 관벽의 영상 실험을 1.5T와 0.3T MRI 장치에서 수행하였다. 회전자계역수신코일의 성능은 단일안장코일과 8극코일보다 감도의 균일도가 우수하였고 신호대 잡음비도 단일안장코일에 비하여 약 36% 높게 측정되어 이론적인 41%와 근사한 결과를 얻었다

  • PDF

단층 불전 내주의 결구 및 배열 방식에 관한 연구 (A Study on the Framework and Arrangement of Interior Column in Single-Story Buddhist Halls)

  • 이우종;전봉희
    • 헤리티지:역사와 과학
    • /
    • 제33권
    • /
    • pp.210-255
    • /
    • 2000
  • This study aims to classify the framework and arrangement of interior columns (Naeju) which are used in single-story Buddhist halls into several types, and to develop a theory on the process of changes among those types. Since interior columns are building materials which hold up the roof structure and make partitions in the interior space of halls, their framework and arrangement is closely linked to the development of building technology and is expected to reflect new architectural needs. The kinds of interior columns classified by the shape of framework are goju, chaduju, oepyonju, naepyonju. The arrangement of interior columns can he classified by two methods: One which counts the number of the interior column arrangements in a hall, and the other whose classification relates with the side wall columns - Jeongchibup and yijubup. With the combination of these classifications, we can divide the framework and arrangement of interior columns into 8 types From the remains of Korean and Chinese Architecture, we can presume that before the late-Goryo period, jeongchibup had always been applied in the construction of Buddhist halls, and gamju(column reducing) had only been used in examples of small scale. After the founding of Choseon Kingdom, however, national policy had weakened the economic power of Buddhist temples. Because of that, large-scale outdoor Buddhist mass was replaced by small-scale indoor mass, and for this reason, though the scale of Buddhist halls became smaller, the need for a broad interior space became stronger. Thus in early-Choseon period, reduction of interior columns became widely spread. Those types of framework and arrangement of interior columns where yijubup was applied were developed because the rear interior columns arrangements, in order to expand the interior space, have moved backward. Among these types, yiju-goju and yiju-chaduju were developed for the Buddhist halls with paljak roof(hipped-gabled roof), where the load of their side eaves caused structural problems at the side walls. And oepyonju type was for the small-scale and middle-scale Buddhist halls which needed more interior space but didn't want the extension of roof structure. From the local and periodic distribution of each types, we can conclude that the types jeongchi-goju, jeongchi-chaduju and yiju-chaduju have been settled as typical technique of local carpenters. Oepyonju was developed later than the other types, but for its merit of low cost, it became a popular type across the nation.

희박연소 엔진의 연소실내 연료분포 특성 연구 (In-Cylinder Fuel Distribution Measurements in a Lean Burn Engine)

  • 김기성;이경환
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.19-32
    • /
    • 1999
  • The present study investigated the forms and behaviors of fuel during intake and compression process, and the initial flame stability in a lean burn engine modified as a single cylinder engine equipped with quartz windows for visualization. PLIF(Planar Laser Induced Fluorescence) method with KrF Excimer laser was used for measuring the fuel distributions. The principal design concept of the lean burn nin in this study is the axial stratification in the fuel distribution via fuel injection during intake process and different shapes of intake ports; helical and straight. The experiments showed that fuel flowed in as a vapor state in the early part of intake process and lots of this mixture mated down along the intake valve side cylinder wall, but in the latter part, a lot of fuel flowed in as a liquid state and this fuel stayed in the upper part of cylinder, after that the dense fuel cloud moved upward in the early of part compression process. It became clear that the fuel flowed in via straight port had a important role in the axial fuel stratification.

  • PDF

차량 롤전복의 과도거동에 관한 시험적 연구 (An Experimental Study on the Transient Behavior of Vehicle Rollover)

  • 이명수;김상섭
    • 한국자동차공학회논문집
    • /
    • 제19권3호
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

옥타데실아민(octadecylamine)을 이용한 탄소나노튜브의 선택적 분산 (Selective Dispersion of Carbon Nanotubes by Octadecylainine)

  • 이광훈;박훈;채희백
    • 한국산학기술학회논문지
    • /
    • 제7권1호
    • /
    • pp.27-32
    • /
    • 2006
  • 옥타데실아민을 사용하여 HiPco 단층벽 탄소나노튜브 중에서 반도체-탄소나노튜브를 분리하였다. 산 처리한 탄소나노튜브를 옥타데실아민과 혼합하고 $120^{\circ}C$에서 120시간동안 가열하였다. 옥타데실아민은 반도체-탄소나노튜브의 벽에 선택적으로 물리흡착되었다. 옥타데실아민과 반응시킨 탄소나노튜브를 최종적으로 테트라하이드로퓨란에 넣고 초음파로 분산시켰다. 금속-탄소나노튜브와 옥타데실아민이 흡착되지 않은 반도체-탄소나노튜브는 서로 엉겨 붙어서 침전되었다. 반면, 옥타데실아민이 물리흡착된 반도체-탄소나노튜브는 분산 용액의 상청액(supernatant)에 남아 있게 된다. 514 nm와 1064 nm의 라만분광법으로 측정한 결과, 상청액에는 반도체-탄소나노튜브가 94 %이상이, 침전물에는 50 % 정도 존재함을 알게 되었다.

  • PDF

2015년 메르스 사태 이후 신축된 종합병원 병동부의 공간구성 특징 및 입원실 세부시설기준에 관한 연구 (A Study of the Spatial Composition and the Facility Criteria of In-patient Rooms in General Hospitals after MERS 2015)

  • 이현진;권순정
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제25권2호
    • /
    • pp.27-35
    • /
    • 2019
  • Purpose: This study is to address the spacial composition of a standard ward and bedroom size for sake of infection control and efficient medical service. Methods: Spacial composition of a standard ward has been proposed by comparative analysis of 5 big hospitals' wards. Bedroom sizes have been explored on the ground of Health care facility regulations from Korea, USA, Australia and Canada. Of course, Literature and field survey have been conducted in order to draw out various bedroom sizes. Results: 16 basic and some other additional spaces have been proposed for the composition of hospital standard ward. Area of Single bedroom is $11.6m^2$, and that of multi-beded room is $7.4m^2$. Bed to bed Clearance is 1.5m, spacing between bedsize and hard wall is 0.9m in 1~2 beded room, 0.75m in 4-beded room. Space clearance between Foot side of bed and curtain is proposed as 0.3m and additional 0.9m is necessary for the circulation. Implications: The result of this study can be applied to the new cons.

플라즈마 식각방법에 의한 단결정 실리콘의 Two-Step 식각특성 (Two-Step Etching Characteristics of Single-Si by the Plasma Etching Techique)

  • 이진희;박성호;김말문;박신종
    • 대한전자공학회논문지
    • /
    • 제24권1호
    • /
    • pp.91-96
    • /
    • 1987
  • Plasma etching can obtain less damaged etch surface than reactive ion etching. This study was performed to get anisotropic etching characteristics of Si using two step etching technique with C2CIF5 and SF6 gas mixture. The results show that the etch rate and aspect ratio of silicon was increased with increment of SF6 contents. The bulging phenomenon on trench side wall in the plasma one-step etching technique was eliminated by the two step etching technique. The anisotropy was decreased from 12(at 120m Torr) to 2.2(at 400m Torr) with increasing the chamber pressure. At the low rf power (350 watts) anisotrpy of silicon was obtained 7 lower than that of high rf power (650 watts. A:~9). In Summary we obtained anisotropic etching profiles of silicon with e 6\ulcornerm depth by using the plasma two-step etching technique.

  • PDF

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.104-104
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate. A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side is installed in the form of coolant block around vertical tube and the heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 15 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348 -3.282kg/hr, of inlet air mass fraction 11.8 -55.0%. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the decrease of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed represented with the 165 sets of local heat transfer data. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17. 7% between the results by the experiment and by the correlation.

  • PDF