• Title/Summary/Keyword: single sensor system

Search Result 637, Processing Time 0.034 seconds

Variable-magnitude Voltage Signal Injection for Current Reconstruction in an IPMSM Sensorless Drive with a Single Sensor

  • Im, Jun-Hyuk;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1558-1565
    • /
    • 2018
  • Three-phase current is reconstructed from the dc-link current in an AC machine drive with a single current sensor. Switching pattern modification methods, in which the magnitude of the effective voltage vector is secured over its minimum, are investigated to accurately reconstruct the three-phase current. However, the existing methods that modify the switching pattern cause voltage and current distortions that degrade sensorless performance. This paper proposes a variable-magnitude voltage signal injection method based on a high frequency voltage signal injection. The proposed method generates a voltage reference vector that ensures the minimum magnitude of the effective voltage vector by varying the magnitude of the injection signal. This method can realize high quality current reconstruction without switching pattern modification. The proposed method is verified by experiments in a 600W Interior permanent magnet synchronous machine (IPMSM) drive system.

Temperature Measurement Using Single-Mode Fiber Interferometric Sensor (단일모드 광섬유의 간섭계 센서를 이용한 온도측정)

  • 김덕수;이상호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In this paper, temperature-induced optical phase shifts in single-mode fibers are studied both analytically and experimentally. Temperature sensor using single-mode fiber interferometer is designed and the temperature sensitivity of the sensor system is investigated. This fiber-optic temperature sensor which employs the Mach-Zehnder arrangement is a high sensitivity sensor of phase detection type. In this type, temperature changes are ob-served as a motion of an optical interference fringe pattern. In the measurements using interferometer, one of the important problems is to detect simultaneously the number and direction of fringe displacement resulting from physical perturbations (temperature, pressure, etc.). To realize this, the array detector using multi-mode fiber is designed. By this array detector the number and direction of fringe displacement is Ineasured very conveniently.

  • PDF

Development of 3D Point Cloud Mapping System Using 2D LiDAR and Commercial Visual-inertial Odometry Sensor (2차원 라이다와 상업용 영상-관성 기반 주행 거리 기록계를 이용한 3차원 점 구름 지도 작성 시스템 개발)

  • Moon, Jongsik;Lee, Byung-Yoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.107-111
    • /
    • 2021
  • A 3D point cloud map is an essential elements in various fields, including precise autonomous navigation system. However, generating a 3D point cloud map using a single sensor has limitations due to the price of expensive sensor. In order to solve this problem, we propose a precise 3D mapping system using low-cost sensor fusion. Generating a point cloud map requires the process of estimating the current position and attitude, and describing the surrounding environment. In this paper, we utilized a commercial visual-inertial odometry sensor to estimate the current position and attitude states. Based on the state value, the 2D LiDAR measurement values describe the surrounding environment to create a point cloud map. To analyze the performance of the proposed algorithm, we compared the performance of the proposed algorithm and the 3D LiDAR-based SLAM (simultaneous localization and mapping) algorithm. As a result, it was confirmed that a precise 3D point cloud map can be generated with the low-cost sensor fusion system proposed in this paper.

A Code Banking-based High-speed Concurrent Software Update Method for Single Hop Wireless Sensor Networks (단일 홉 무선 센서 네트워크를 위한 코드 뱅킹 기반의 고속 병렬 소프트웨어 업데이트 기법)

  • Park, Young-Kyun;Nam, Young-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.7
    • /
    • pp.949-963
    • /
    • 2011
  • Generally, It is indispensible to use an ISP(In System Programming) tool for upgrading, patching, or changing the system software of the each sensor nodes in wireless sensor networks. While under a small number of nodes, the upgrading task is not a serious burden, however if there are a large number of nodes to be updated, the task is almost impossible to do for the given constrains such as limited budgets and resources. Based on this observation, in this paper we have proposed a novel upgrading scheme based on a single hop in IEEE 802.15.4 PAN(Personal Area Network)s. Simulation results have shown the scheme outcomes the conventional methods in the performance measures.

A Study on Malodor Pattern Analysis Using Gas Sensor Array (가스센서 어레이를 이용한 악취 패턴분석에 대한 연구)

  • Choi, Jang-Sik;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Hea-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.286-291
    • /
    • 2013
  • This paper presents to analyze patterns from single and complex malodors using gas sensor array based on metal oxide semiconductors. The aim of research is to identify and discriminate single malodors such as $NH_3$, $CH_3SH$ and $H_2S$ and their mixtures according to concentration levels. Measurement system for analyzing patterns from malodors is constructed by an array of metal oxide semiconductor sensors which are available commercially together with associate electronics. The patterns from sensory system are analyzed by Principal Component Analysis (PCA) which is simple statistical pattern recognition technique. Throughout the experimental trails, we confirmed the experimental procedure for measurement system such as sensors calibration time and gas flow rate, and discriminated malodors using pattern analysis technique.

The Development of Sensor System and 3D World Modeling for Autonomous Vehicle (무인 차량을 위한 센서 시스템 개발 및 3차원 월드 모델링)

  • Kim, Si-Jong;Kang, Jung-Won;Choe, Yun-Geun;Park, Sang-Un;Shim, In-Wook;Ahn, Seung-Uk;Chung, Myung-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.531-538
    • /
    • 2011
  • This paper describes a novel sensor system for 3D world modeling of an autonomous vehicle in large-scale outdoor environments. When an autonomous vehicle performs path planning and path following, well-constructed 3D world model of target environment is very important for analyze the environment and track the determined path. To generate well-construct 3D world model, we develop a novel sensor system. The proposed novel sensor system consists of two 2D laser scanners, two single cameras, a DGPS (Differential Global Positioning System) and an IMU (Inertial Measurement System). We verify the effectiveness of the proposed sensor system through experiment in large-scale outdoor environment.

A Study on the Development of a pub level Silica Measuring Technology by the Split-beam Type System (스플리트빔 형태의 고정도 단위 실리카 측정기술 개발에 관한 연구)

  • 정경열;류길수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.382-388
    • /
    • 2002
  • Dissolved silica is one of fatal components at a boiler facility Therefore, a dissolved silica measurement system should be equipped for managing efficiently the boiler facility. Most of silica measurement systems are composed of a sensor module of single-beam type structure, and silica density is measured with a infrared spectrometry using the Lambert-beer method. However, such a system occurs measuring error of large range and inconsistency of a light source, because of measuring a standard sample and a measuring sample alternatively. This paper introduces a method that the sensor module has a split-beam type structure and a tungsten lamp. The proposed system can measure silica density quickly and precisely more than those composing of a single-beam type structure, because of measuring and comparing with two samples at a same time. And examination results are shown to compare efficiencies of the system and existing commercial products, and for an ammonia influence.

Development of Single-Channel Thread Sensor for Rotary Bobbin by Optical Sensing (광센서를 이용한 로터리 보빈용 단채널 밑실 감지기 개발에 관한 연구)

  • Jung, Yong-Sub;Cho, Janghyun;Byeon, Clare Chisu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1085-1091
    • /
    • 2014
  • We developed a single-channel thread sensor for a rotary bobbin by optical sensing and analyzed the signal characteristics. A specially designed mount made of ABS (acrylonitrile-butadiene-styrene) resin that encapsulated an optical sensor was fabricated by using a 3D printer and was attached to the rotary bobbin system. Stable control on a weaving machine was achieved by observing the difference in the output signals of an optical sensor system, which vary significantly according to the states of the thread in the weaving operation. The optical sensor effectively detects an unintentional thread cut and run-out during weaving fast enough to enable prompt stopping of the weaving machine, thereby minimizing the loss of expensive fabrics.

Bio-functionalization of the Single Layer Graphene for Detecting the Cancer Cell

  • Oh, Hyung Sik;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.429.1-429.1
    • /
    • 2014
  • We present a method of surface functionalization of a single layer graphene for linking and detecting MDA-MB-231 human breast cancer cell. The methodology is done by utilizing 1-pyrenebutanoic acid and succinimidyl ester for immobiling CD44 antibodies. This work shows that the single layer graphene is an efficient fixing substance to capture the MDA-MB-231 human breast cancer cell, selectively. The immobilization method of the cancer cell on the graphene layer will be an effective cell counting system. Moreover usage of the linking with non-covalent bonding is expected to develope a sensor scheme of electrical cell-detecting diagnosis system.

  • PDF

Fault Tolerant Control of Sensor Fault of EPB System (EPB 시스템의 센서 고장 허용 제어 기법)

  • Lee, Won-Goo;Lee, Young-Ok;Jang, Min-Seok;Lee, Choong-Woo;Chung, Chung-Choo;Chung, Han-Byul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.8-17
    • /
    • 2010
  • In this paper, a fault tolerant control against sensor faults of electric parking brake (EPB) is proposed. Fault tolerant control method of EPB system is strongly demanded since sensor faults can endanger a driver's safety. In this paper, a clamp force estimation method is presented using motor's armature current and angular velocity. Clamp force estimation method is applied for fault detection method with parity equations. The goal of the detection method is to detect and identify faults in encoder, current sensor, force sensor, and parking cable. And a switching logic for fault tolerant control against the three sensor faults is suggested. Experimental results show that the proposed force estimation method satisfies the specifications of EPB system. The effectiveness of the fault detection method is validated with experimental results. Although a single sensor fault happens, EPB system with the proposed fault detection method does not develop into a failure on subsystem or system level.