• Title/Summary/Keyword: single sensor system

Search Result 637, Processing Time 0.028 seconds

A Research for Novel Brushless Direct Current Motor Position Senseless Drive Using Single Current Sensor (단일전류센서를 이용한 브러시리스 직류 전동기의 새로운 센서리스 제어에 관한 연구)

  • Kim, Byung-Bok;Jang, Jae-Wan;Jang, Ki-Bong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.141-143
    • /
    • 2003
  • This paper proposes a new sensorless drive system for the trapezoidal Brushless Direct Current (BLDC) motor requiring mechanical position or speed sensor. The proposed method is using only one current sensor For this an indirect rotor position sensing method from the periodically variation DC Link current waveform. DC Link current waveform change from high to low when BLDC commutate status. This algorithm was verified by simulations using MATLAB SIMULINK and experiment.

  • PDF

Dual Addressing Scheme in IPv6 over IEEE 802.15.4 Wireless Sensor Networks

  • Yang, Soo-Young;Park, Sung-Jin;Lee, Eun-Ju;Ryu, Jae-Hong;Kim, Bong-Soo;Kim, Hyung-Seok
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.674-684
    • /
    • 2008
  • This paper proposes a dual addressing scheme (DAS) for IPv6 over IEEE 802.15.4 wireless sensor networks (WSN). DAS combines a global unicast address to cope with association link changes and node mobility, and it links local addresses to lighten the overhead of the system to save energy and resources. This paper describes DAS address formats, address autoconfiguration, and address translation tables in the gateway. A detailed description of DAS is provided through examples. Simulations are performed to demonstrate the performance improvements of the DAS compared with the IPv6-based WSN, which uses the conventional single address.

  • PDF

Characterization of Pipe Defects in Torsional Guided Waves Using Chirplet Transform (첩릿변환을 이용한 배관 결함 특성 규명)

  • Kim, Chung-Youb;Park, Kyung-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.636-642
    • /
    • 2014
  • The sensor configuration of the magnetostrictive guided wave system can be described as a single continuous transducing element which makes it difficult to separate the individual modes from the reflected signal. In this work we develop the mode decomposition technique employing chirplet transform, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor, and to estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize defects. The reflection coefficients are calculated using the modal energies of the separated mode. Results from experimental results on a carbon steel pipe are presented, which show that the accurate and quantitative defect characterization could become enabled using the proposed technique.

A study on the In-Process Monitoring of Tool Wear via Ultrasonic Sensor (초음파 센서를 이용한 인프로세스 공구마멸 감시에 관한 연구)

  • Jeong, Eui-Sik;Hwang, Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.94-100
    • /
    • 2000
  • This paper presents a methodology for In-Process monitoring of tool wear by using ultrasonic sensor in turning operation. An integrated single ultrasonic transducer operation at a frequency of 10MHz is placed in contact with the insert tip. The change in amount of the reflected energy from the nose and flank of the tool can be related to the level of tool wear and the mechanical integrity of the tool. As the results, the tool wear monitoring system based on the ultrasonic pulse-echo method was proposed, it is useful to determine a tool life and tool change time.

  • PDF

Mode Separation in Torsional Guided Waves Using Chirplet Transform (첩릿변환을 이용한 비틀림 유도파 모드분리)

  • Kim, Young-Wann;Park, Kyung-Jo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.324-331
    • /
    • 2014
  • The sensor configuration of the magnetostrictive guided wave system can be described as a single continuous transducing element which makes it difficult to separate the individual modes from the reflected signal. In this work we develop the mode decomposition technique employing chirplet transform based on the maximum likelihood estimation, which is able to separate the individual modes from dispersive and multimodal waveform measured with the magnetostrictive sensor, and estimate the time-frequency centers and individual energies of the reflection, which would be used to locate and characterize defects. Simulation results on a carbon steel pipe are presented, which show the accurate mode separation and more discernible time-frequency representation could become enabled using the proposed technique.

A study on MicroCantilever Deflection for the Infrared Image Sensor using Bimetal Structure (바이메탈형 적외선 이미지 센서 제작과 칸틸레버 변위에 관한 고찰)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.34-38
    • /
    • 2005
  • This is a widespread requirement for low cost lightweight thermal imaging sensors for both military and civilian applications. Today, a large number of uncooled infrared detector developments are under progress due to the availability of silicon technology that enables realization of low cost IR sensor. System prices are continuing to drop, and swelling production volume will soon drive process substantially lower. The feasibility of micromechanical optical and infrared (IR) detection using microcantilevers is demonstrated. Microcantilevers provide a simple Structurefor developing single- and multi-element sensors for visible and infrared radiation that are smaller, more sensitive and lower in cost than quantum or thermal detectors. Microcantilevers coated with a heat absorbing layer undergo bending due to the differential stress originating from the bimetallic effect. This paper reports a micromachined silicon uncooled thermal imager intended for applications in automated process control. This paper presents the design, fabrication, and the behavior of cantilever for thermomechanical sensing.

  • PDF

An Efficient Horizontal Maintenance Technique for the Mobile Inverted Pendulum (모바일 역진자의 효율적 수평유지 기법)

  • Yun, Jae-Mu;Lee, Jae-Kyoung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.656-663
    • /
    • 2007
  • A new dynamic balancing algorithm has been proposed to minimize the number of sensors necessary for the horizontal balancing of the mobile inverted pendulum while maintaining the same level of the commercial performance. The inverted pendulum technique is getting attention and there have been many researches on the Segway since the US inventor Dean Kamen commercialized. One of the major problems of the Segway is that many sensors are required for the control of the Segway, which results in the high price. In this research, a single gyro and a tilt sensor are fused to obtain the absolute tilt information, which is applied for the control of the mobile inverted pendulum. A dynamic balancing technique has been developed and applied for a robust control system against disturbances. The intelligent handling and stable curving of the Segway as a next generation mobile tool are verified with a human loading.

Sensor Fusion for Underwater Navigation of Unmanned Underwater Vehicle (무인잠수체의 수중항법을 위한 센서퓨전)

  • 주민근;서주노;송광섭;이판묵;홍석원;박영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.175-175
    • /
    • 2000
  • In this Paper we propose a navigation algorithm which can be used to estimate state vectors such as position and velocity for its motion control using multi-sensor output measurements. The output measurement we will use in estimating the state is a series of known multi-sensor asynchronous outputs with measurement noise. This paper investigates the Extended Kalman Filtering method to merge asynchronous heading, heading rate, velocity of DVL, and SSBL information to produce a single state vector. Different complexity of Kalman Filter, with biases and measurement noise, are investigated with theoretically data from KRISO's AUV. All levels of complexity of the Kalman Filters are shown to be much more close and smooth to real trajectories then the basic underwater acoustic navigation system comment)'used aboard underwater vehicle.

  • PDF

Long-Range Guided Wave Inspection of Structures Using the Magnetostrictive Sensor

  • Kwun, He-Geon;Kim, Sang-Young;Light, Glenn M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2001
  • Long-range guided wave inspection is a new emerging technology for rapidly and globally inspecting a large area of a structure from a single test location. This paper describes a general overview of the guided wave properties and its application for long-range inspection of structures the principle and instrument system for a guided wave inspection technology called "magnetostrictive sensor (MsS)" that generates and detects guided waves electromagnetically in the material under testing, and examples of long-range guided wave inspection of structures that can be accomplished using the MsS.

  • PDF

A Study on Characteristics of Sagnac Interferometric Optical Fiber Sensor to Pulsed Ultrasonic Signal in Underwater (수중에서 펄스초음파 신호에 대한 Sagnac 간섭형 광섬유센서의 특성 연구)

  • 이준호;신대용
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.1
    • /
    • pp.15-19
    • /
    • 2004
  • In this paper, we present the fabrication and characteristic analysis of Sagnac interferometric optical fiber senior(OFS) system for detecting pulsed ultrasonic signal in underwater. The hollow cylindrical mandrel wound round by single mode optical fiber is used as sensing component. The ultrasonic signal source is simulated by the PZT actuator operated by an function generator. The distance dependency of the OFS's sensitivity was measured. The sensitivity has been shown to be inversely propotional to the square-root of distance between ultrasonic source and sensing component. It has also been shown that the OFS could detect the signals less affected by ultrasonic path comparing to conventional acousto-electric sensor. and accurate location of ultrasonic signal could be carried out using two OFSs.