• 제목/요약/키워드: single power-conversion

검색결과 386건 처리시간 0.025초

모노리식 X-band 혼합기 (Monolithic X-band Mixer)

  • 전용일;박형무;마동성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.426-429
    • /
    • 1988
  • A simple design method of a single balanced MMIC mixer is described. It uses small signal S11 and capacitive load for the input matching circuit and the output loading circuit, respectively. It is found that the conversion gain of the FET mixer is independent of FET gate width. The fabricated mixer has 2.5 dB conversion gain at 9 GHz with 50 ohm IF load and 2 dBm local oscillator power.

  • PDF

A Study on the Modeling and Design of Single Phase Induction Generators

  • Kim Cherl-Jin;Lee Kwan-Yong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.331-336
    • /
    • 2005
  • With increasing emphasis on non-conventional energy systems and autonomous power generation, development of improved and appropriate generating systems has recently taken on greater significance. This paper describes the performance analysis of a single phase self-excited induction generator (SEIG), suitable for autonomous/standby power systems. The system is also appropriate for wind energy systems and small portable systems. Both windings of the induction machine, the main and the auxiliary, are utilized. One winding will be devoted to the supply excitation current only, by being connected to the excitation capacitor, while the load is connected across the other winding. As the design of excitation, the minimum of self-excited capacitor connected auxiliary winding is determined as the suitable value using a circuit equation of auxiliary winding. For the steady state analysis, the equivalent circuit of the single-phase induction generators is used as a basis for modeling using the double-revolving field theory. The validity of the designed generator system is confirmed by experimental and computed results.

Utility Interactive Solar Power Conditioner with Zero Voltage Soft Switching High frequency Sinewave Modulated Inverter Link

  • Terai H.;Sumiyoshi S.;Kitaizumi T.;Omori H.;Ogura K.;Chandhaket S.;Nakaoka M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.668-672
    • /
    • 2001
  • The utility interactive sinewave modulated inverter for the solar photovoltaic (PV) power conversion and conditioning with a new high frequency pulse modulated link is presented for domestic residential applications. As compared with the conventional full-bridge hard switching PWM inverter with a high frequency AC link, the simplest single-ended quasi-resonant soft switching sinewave modulated inverter with a duty cycle pulse control is implemented, resulting in size and weight reduction and low-cost. This paper presents a prototype circuit of the single-ended zero voltage soft switching sinewave inverter for solar power conditioner and its operating principle. In addition, this paper proposes a control system to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed from an experimental point of view. A newly developed interactive sinewave power processor which has $92.5\%$ efficiencty at 4kW output is demonstrated. It is designed 540mm-300mm-125mm in size, and 20kg in weight.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

저전력 2-Step 8-bit 10-MHz CMOS A/D 변환기 (A Low-Power 2-Step 8-bit 10-MHz CMOS A/D Converter)

  • 박창선;손주호;김영랄;김동용
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(2)
    • /
    • pp.201-204
    • /
    • 2000
  • In this paper, an A/D converter is implemented to obtain 8bit resolution at a conversion rate of 10Msample/s. This architecture is proposed using the 2-step architecture for high speed conversion rate. It is consisted of sample/hold circuit, low power comparator, voltage reference circuit and DAC of binary weighted capacitor array. Proposed A/D converter is designed using 0.2$\mu\textrm{m}$ CMOS technology. The SNR is 45.3dB at a sampling rate of 10MHz with 1.95MHz sine input signal. When an 8bit 10Msample/s A/D converter is simulated, the Differential Nonlinearity / Integral Nonlinearity (DNL/ INL) error are ${\pm}$1 / ${\pm}$2 LSB, respectively. The power consumption is 13㎽ at single +2.5V supply voltage.

  • PDF

Design of a sub-harmonic dual-gate FET mixer for IMT-2000 base-station

  • Kim, Jeongpyo;Park, Jaehoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1046-1049
    • /
    • 2002
  • In this paper, a sub-harmonic dual-gate FET mixer for IMT-2000 base-station was designed by using single-gate FET cascode structure and driven by the second order harmonic component of LO signal. The dual-gate FET mixer has the characteristic of high conversion gain and good isolation between ports. Sub-harmonic mixing is frequently used to extend RF bandwidth for fixed LO frequency or to make LO frequency lower. Furthermore, the LO-to-RF isolation characteristic of a sub-harmonic mixer is better than that of a fundamental mixer because the frequency separation between the RE and LO frequency is large. As RF power is -30dBm and LO power is 0dBm, the designed mixer shows the -47.17dBm LO-to-RF leakage power level, 10dB conversion gain, -0.5dBm OIP3, -10.5dBm IIP3 and -1dBm 1dB gain compression point.

  • PDF

A NOVEL ZVS-CV PWM AC-DC CONVERTER

  • Yan, Baiping;Chen, Zhiming;Liu, Jian
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.709-712
    • /
    • 1998
  • A new ZVS-CV PWM converter with power factor correction (PFC) function is presented in this paper. The new topology is a integration of a boost converter and a ZVS-CV topology in a single power conversion stage. The new converter can be regulated in pulse-width modulation (PWM) by universal integrated control circuits. Some design considerations are given in detail. A laboratory prototype has been implemented to show the feasibility of the approach and the analysis.

  • PDF

USN/RFID Reader용 저전력 시그마 델타 ADC 변환기 설계에 관한 연구 (Design of Low Power Sigma-delta ADC for USN/RFID Reader)

  • 강이구;한득창;홍승우;이종석;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.800-807
    • /
    • 2006
  • To enhance the conversion speed more fast, we separate the determination process of MSB and LSB with the two independent ADC circuits of the Incremental Sigma Delta ADC. After the 1st Incremental Sigma Delta ADC conversion finished, the 2nd Incremental Sigma Delta ADC conversion start while the 1st Incremental Sigma Delta ADC work on the next input. By determining the MSB and the LSB independently, the ADC conversion speed is improved by two times better than the conventional Extended Counting Incremental Sigma Delta ADC. In processing the 2nd Incremental Sigma Delta ADC, the inverting sample/hold circuit inverts the input the 2nd Incremental Sigma Delta ADC, which is the output of switched capacitor integrator within the 1st Incremental Sigma Delta ADC block. The increased active area is relatively small by the added analog circuit, because the digital circuit area is more large than analog. In this paper, a 14 bit Extended Counting Incremental Sigma-Delta ADC is implemented in $0.25{\mu}m$ CMOS process with a single 2.5 V supply voltage. The conversion speed is about 150 Ksamples/sec at a clock rate of 25 MHz. The 1 MSB is 0.02 V. The active area is $0.50\;x\;0.35mm^{2}$. The averaged power consumption is 1.7 mW.

주파수 상향변환 검출기를 이용한 1.5 ㎛ 통신파장대역의 단일광자 측정 (Single-photon Detection at 1.5 ㎛ Telecommunication Wavelengths Using a Frequency up-conversion Detector)

  • 김헌오;윤천주;조석범;김용수
    • 한국광학회지
    • /
    • 제22권5호
    • /
    • pp.223-229
    • /
    • 2011
  • 1.5 ${\mu}m$ 통신파장 대역 단일광자의 효율적인 측정을 위해서 PPLN WG(periodically poled $LiNbO_3$ waveguide)에서 준위상정합을 이용한 합주파수 생성에 의한 주파수 상향변환 검출기를 구성하고 검출 효율, 잡음 계수 및 타이밍 지터를 측정하였다. 974 nm에서 발진하는 펌프광의 세기가 300 mW일 때 최대 검출효율이 약 7%, 잡음 계수율은 약 480 kHz로 측정되었다. 피코초펄스 레이저를 이용한 자발적 매개하향변환에서 발생한 펄스형 단일광자 신호를 이용하여 측정된 주파수 상향변환 검출기의 최소 타이밍 지터는 약 39.1 ps였다. 또한 아주 좁은 동시계수 시간 폭으로 펄스형의 주파수 상향변환된 단일광자를 측정하면 잡음의 효과를 최소화할 수 있고, 신호대 잡음비의 특성을 최대로 높일 수 있다.

Family of Dual-Input Dual-Buck Inverters Based on Dual-Input Switching Cells

  • Yang, Fan;Ge, Hongjuan;Yang, Jingfan;Dang, Runyun;Wu, Hongfei
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1015-1026
    • /
    • 2018
  • A family of dual-DC-input (DI) dual-buck inverters (DBIs) is proposed by employing a DI switching cell as the input of traditional DBIs. Three power ports, i.e. a low voltage DC input port, a high voltage DC input port and an AC output port, are provided by the proposed DI-DBIs. A low voltage DC source, whose voltage is lower than the peak amplitude of the AC side voltage, can be directly connected to the DI-DBI. This supplies power to the AC side in single-stage power conversion. When compared with traditional DBI-based two-stage DC/AC power systems, the conversion stages are reduced, and the power rating and power losses of the front-end Boost converter of the DI-DBI are reduced. In addition, five voltage-levels are generated with the help of the two DC input ports, which is a benefit in terms of reducing the voltage stresses and switching losses of switches. The topology derivation method, operation principles, modulation strategy and characteristics of the proposed inverter are analyzed in-depth. Experimental results are provided to verify the effectiveness and feasibility of the proposed DI-DBIs.