• Title/Summary/Keyword: single phase active filter

Search Result 92, Processing Time 0.016 seconds

A Clock and Data Recovery Circuit using Quarter-Rate Technique (1/4-레이트 기법을 이용한 클록 데이터 복원 회로)

  • Jeong, Il-Do;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.130-134
    • /
    • 2008
  • This paper presents a clock and data recovery(CDR) using a quarter-rate technique. The proposed CDR helps reduce the VCO frequency and is thus advantageous for high speed application. It can achieve a low jitter operation and extend the pull-in range without a reference clock. The CDR consists of a quarter-rate bang-bang type phase detector(PD) quarter-rate frequency detector(QRFD), two charge pumps circuits(CPs), low pass filter(LPF) and a ring voltage controlled oscillator(VCO). The Proposed CDR has been fabricated in a standard $0.18{\mu}m$ 1P6M CMOS technology. It occupies an active area $1{\times}1mm^2$ and consumes 98 mW from a single 1.8 V supply.

Design and output control technique of sonar transmitter considering impedance variation of underwater acoustic transducer (수중 음향 트랜스듀서의 임피던스 변화를 고려한 소나 송신기의 설계 및 출력 제어 기법)

  • Shin, Chang-Hyun;Lee, Yoon-Ho;Ahn, Byoung-Sun;Yoon, Hong-Woo;Kwon, Byung-Jin;Kim, Kyung-Seop;Lee, Jeong-Min
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.481-491
    • /
    • 2022
  • The active sonar transmission system consists of a transmitter that outputs an electrical signal and an underwater acoustic transducer that converts the amplified electrical signal into an acoustic signal. In general, the transmitter output characteristics are dependent on load impedance, and an underwater acoustic transducer, which is a transmitter load, has a characteristic that the electrical impedance varies largely according to frequency when driven. In such a variable impedance condition, the output of the active sonar transmission system may become unstable. Hence, this paper proposes a design and control technique of a sonar transmitter for transmitting a stable transmission signal even under variable impedance conditions of an underwater acoustic transducer in an active sonar transmission system. The electrical impedance characteristics of the underwater acoustic transducer are experimentally analyzed, and the sonar transmitter is composed of a single-phase full-bridge inverter, an LC filter, and a matching circuit. In this paper, the design and output control method of the sonar transmitter is proposed to protect the transmitter and transducer. It can secure stable output voltage characteristics even if it transmits the Linear Frequency Modulation (LFM) signal. The validity is verified through the simulation and the experiment.