• Title/Summary/Keyword: single molecule

Search Result 349, Processing Time 0.026 seconds

Molecular Bonding Force and Stiffness in Amine-Linked Single-Molecule Junctions Formed with Silver Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.132-135
    • /
    • 2015
  • Bonding force and stiffness in amine-linked single-molecule junctions for Ag electrodes were measured using a home-built conducting atomic force microscope under ambient conditions at room temperature. For comparison, Au electrodes were used to measure the rupture force and stiffness of the molecular junctions. The traces of the force along with the conductance showed a characteristic saw-tooth pattern owing to the breaking of the metal atomic contacts or the metal-molecule- metal junctions. We found the rupture force and stiffness for Ag are smaller than those for Au electrodes. Furthermore, we observed that the force required to break the amine-Ag bond in the conjugated molecule, 1,4-benzenediamine, is smaller than in 1,4-butanediamine which is fully saturated. These results consist with the previous theoretical calculations for the binding energies of the nitrogen bonded to Ag or Au atoms.

Single-molecule fluorescence measurements reveal the reaction mechanisms of the core-RISC, composed of human Argonaute 2 and a guide RNA

  • Jo, Myung Hyun;Song, Ji-Joon;Hohng, Sungchul
    • BMB Reports
    • /
    • v.48 no.12
    • /
    • pp.643-644
    • /
    • 2015
  • In eukaryotes, small RNAs play important roles in both gene regulation and resistance to viral infection. Argonaute proteins have been identified as a key component of the effector complexes of various RNA-silencing pathways, but the mechanistic roles of Argonaute proteins in these pathways are not clearly understood. To address this question, we performed single-molecule fluorescence experiments using an RNA-induced silencing complex (core-RISC) composed of a small RNA and human Argonaute 2. We found that target binding of core-RISC starts at the seed region of the guide RNA. After target binding, four distinct reactions followed: target cleavage, transient binding, stable binding, and Argonaute unloading. Target cleavage required extensive sequence complementarity and accelerated core-RISC dissociation for recycling. In contrast, the stable binding of core-RISC to target RNAs required seed-match only, suggesting a potential explanation for the seed-match rule of microRNA (miRNA) target selection.

Structural and dynamic views of the CRISPR-Cas system at the single-molecule level

  • Lee, Seung Hwan;Bae, Sangsu
    • BMB Reports
    • /
    • v.49 no.4
    • /
    • pp.201-207
    • /
    • 2016
  • The CRISPR-Cas system has emerged as a fascinating and important genome editing tool. It is now widely used in biology, biotechnology, and biomedical research in both academic and industrial settings. To improve the specificity and efficiency of Cas nucleases and to extend the applications of these systems for other areas of research, an understanding of their precise working mechanisms is crucial. In this review, we summarize current studies on the molecular structures and dynamic functions of type I and type II Cas nucleases, with a focus on target DNA searching and cleavage processes as revealed by single-molecule observations.

Oxygen-Silver Junction Formation for Single Molecule Conductance

  • Jo, Han Yeol;Yoo, Pil Sun;Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.18-21
    • /
    • 2015
  • We use a scanning tunneling microscope based break-junction technique to measure the conductance of a 4,4'-dimethoxybiphenyl molecular junction formed with Ag and Au electrodes. We observe the formation of a clear molecular junction with Ag electrodes that result from stable Ag-oxygen bonding structures. However we have no molecular bonding formation when using Au electrodes, resulting in a tunneling current between the top and bottom metal electrodes. We also see a clear peak in the conductance histogram of the Ag-oxygen molecular junctions, but no significant molecular features are seen with Au electrodes. Our work should open a new path to the conductance measurements of single-molecule junctions with oxygen linkers.

Synthesis and Photoinduced Magnetic Properties of a Mn12 Single Molecule Magnet by the cis-trans Isomerism of Azobenzene

  • George, Sheby M.;Kim, Jin-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1143-1146
    • /
    • 2009
  • [$Mn_{12}O_{12}(azo-L)_{16}(H_2O)_4$] (1), a new Mn12 single molecule magnet containing a photochromic azobenzene ligand, has been successfully synthesized by substitution of acetate ligand of Mn12 with 6-[4-{4-hexyloxyphenyl( azo)}-phenoxy]hexanoic-1-acid. The reversible photoisomerization of the azobenzene group was confirmed by UV-visible absorption spectroscopy. The temperature and field dependence of dc susceptibility and the temperature and the frequency dependence of ac susceptibility were measured for the cis and the trans isomer of 1. The magnetization value of the cis isomer in dc measurement is higher than that of the trans isomer. The cis isomer of 1 has a slower relaxation because cis-trans photoisomerization of the azobenzene group in peripheral ligands induces changes in its structure and dipole moment.

Nano-Precision Tweezers for Mechanosensitive Proteins and Beyond

  • Yang, Taehyun;Park, Celine;Rah, Sang-Hyun;Shon, Min Ju
    • Molecules and Cells
    • /
    • v.45 no.1
    • /
    • pp.16-25
    • /
    • 2022
  • Mechanical forces play pivotal roles in regulating cell shape, function, and fate. Key players that govern the mechanobiological interplay are the mechanosensitive proteins found on cell membranes and in cytoskeleton. Their unique nanomechanics can be interrogated using single-molecule tweezers, which can apply controlled forces to the proteins and simultaneously measure the ensuing structural changes. Breakthroughs in high-resolution tweezers have enabled the routine monitoring of nanometer-scale, millisecond dynamics as a function of force. Undoubtedly, the advancement of structural biology will be further fueled by integrating static atomic-resolution structures and their dynamic changes and interactions observed with the force application techniques. In this minireview, we will introduce the general principles of single-molecule tweezers and their recent applications to the studies of force-bearing proteins, including the synaptic proteins that need to be categorized as mechanosensitive in a broad sense. We anticipate that the impact of nano-precision approaches in mechanobiology research will continue to grow in the future.

Construction and Characterization of a Single-Chain Immunoglobulin

  • Kim, Youn-Kyu;Choi, In-Hak;Ryu, Chun-Jeih;Hong, Hyo-Jeong
    • BMB Reports
    • /
    • v.30 no.3
    • /
    • pp.177-181
    • /
    • 1997
  • We constructed a single-chain immunoglobulin in which the carboxyl end of the heavy chain variable domain is covalently joined to the amino terminus of the light chain variable domain via peptide linker and the carboxyl end of the light chain variable domain is linked to human ${\gamma}1$ Fc region through the hinge region. The molecule was expressed in Chinese hamster ovary cells, assembled into a dimeric molecule and secreted into the culture medium. The dimeric molecule (2E11) was purified from the culture supernatant by affinity chromatography on Protein G-Sepharose column. The size of the unreduced or reduced protein was the expected molecular weight of approximately 120 or 60 kDa, respectively, as assessed by SDS-polyacrylamide gel electrophoresis. The antigen-binding affinity of 2E11 was almost the same as that of a native antibody counterpart (CS131A), suggesting that the single-chain immunoglobulin may function like a native antibody.

  • PDF

Dynamic lipopolysaccharide transfer cascade to TLR4/MD2 complex via LBP and CD14

  • Kim, Soo Jin;Kim, Ho Min
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.55-57
    • /
    • 2017
  • Toll-like receptor 4 (TLR4) together with MD2, one of the key pattern recognition receptors for a pathogen-associated molecular pattern, activates innate immunity by recognizing lipopolysaccharide (LPS) of Gram-negative bacteria. Although LBP and CD14 catalyze LPS transfer to the TLR4/MD2 complex, the detail mechanisms underlying this dynamic LPS transfer remain elusive. Using negative-stain electron microscopy, we visualized the dynamic intermediate complexes during LPS transfer-LBP/LPS micelles and ternary CD14/LBP/LPS micelle complexes. We also reconstituted the entire cascade of LPS transfer to TLR4/MD2 in a total internal reflection fluorescence (TIRF) microscope for a single molecule fluorescence analysis. These analyses reveal longitudinal LBP binding to the surface of LPS micelles and multi-round binding/unbinding of CD14 to single LBP/LPS micelles via key charged residues on LBP and CD14. Finally, we reveal that a single LPS molecule bound to CD14 is transferred to TLR4/MD2 in a TLR4-dependent manner. These discoveries, which clarify the molecular mechanism of dynamic LPS transfer to TLR4/MD2 via LBP and CD14, provide novel insights into the initiation of innate immune responses.

Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes

  • Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.513-516
    • /
    • 2014
  • We measure the conductance of a 4,4'-diaminobiphenyl formed with Ni electrodes using a scanning tunneling microscope-based break-junction technique. For comparison, we use Au or Ag electrodes to form a metal-molecular junction. For molecules that conduct through the highest occupied molecular orbital, junctions formed with Ni show similar conductance as Au and are more conductive than those formed with Ag, consistent with the higher work function for Ni or Au. Furthermore, we observe that the measured molecular junction length that is formed with the Ni or Au electrodes was shorter than that formed with the Ag electrodes. These observations are attributed to a larger gap distance of the Ni or Au electrodes compared to that of the Ag electrodes after the metal contact ruptures. Since our work allows us to measure the conductance of a molecule formed with various electrodes, it should be relevant to molecular electronics with versatile materials.

Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1

  • Kang, Yujin;Cho, Carol;Lee, Kyung Suk;Song, Ji-Joon;Lee, Ja Yil
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1-DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.