• Title/Summary/Keyword: single molecule

Search Result 347, Processing Time 0.026 seconds

Studying confined polymers using single-molecule DNA experiments

  • Hsieh, Chih-Chen;Doyle, Patrick S.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.3
    • /
    • pp.127-142
    • /
    • 2008
  • The development of fluorescence microscopy of single-molecule DNA in the last decade has fostered a bold jump in the understanding of polymer physics. With the recent advance of nanotechnology, devices with well-defined dimensions that are smaller than typical DNA molecules can be readily manufactured. The combination of these techniques has provided an unprecedented opportunity for researchers to examine confined polymer behavior, a topic far less understood than its counterpart. Here, we review the progress reported in recent studies that investigate confined polymer dynamics by means of single-molecule DNA experiments.

Single C-Reactive Protein Molecule Detection on a Gold-Nanopatterned Chip Based on Total Internal Reflection Fluorescence

  • Heo, Yunmi;Lee, Seungah;Lee, Sang-Won;Kang, Seong Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2725-2730
    • /
    • 2013
  • Single C-reactive protein (CRP) molecules, which are non-specific acute phase markers and products of the innate immune system, were quantitatively detected on a gold-nanopatterned biochip using evanescent field-enhanced fluorescence imaging. The $4{\times}5$ gold-nanopatterned biochip (spot diameter of 500 nm) was fabricated by electron beam nanolithography. Unlabeled CRP molecules in human serum were identified with single-molecule sandwich immunoassay by detecting secondary fluorescence generated by total internal reflection fluorescence (TIRF) microscopy. With decreased standard CRP concentrations, relative fluorescence intensities reduced in the range of 33.3 zM-800 pM. To enhance fluorescence intensities in TIRF images, the distance between biochip surface and CRP molecules was optimally adjusted by considering the quenching effect of gold and the evanescent field intensity. As a result, TIRF only detected one single-CRP molecule on the biochip the first time.

Switching and sensing molecular spins by chemical reactions on metal surfaces

  • Kahng, Se-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.63.2-63.2
    • /
    • 2015
  • Controlling and sensing spin states of magnetic molecules such as metallo-porphyrins at the single molecule level is essential for spintronic molecular device applications. Axial coordinations of diatomic molecules to metallo-porphyrins also play key roles in dynamic processes of biological functions such as blood pressure control and immune response. However, probing such reactions at the single molecule level to understand their physical mechanisms has been rarely performed. Here we present on our single molecule association and dissociation experiments between diatomic and metallo-porphyrin molecules on Au(111) describing its adsorption structures, spin states, and dissociation mechanisms. We observed bright ring shapes in NO adsorbed metallo-porphyrin compelxes and explained them by considering tilted binding and precession motion of NO. Before NO exposure, Co-porphryin showed a clear zero-bias peak in scanning tunneling spectroscopy, a signature of Kondo effect in STS, whereas after NO exposures it formed a molecular complex, NO-Co-porphyrin, that did not show any zero-bias feature implying that the Kondo effect was switched off by binding of NO. Under tunneling junctions of scanning tunneling microscope, both positive and negative energy pulses. From the observed power law relations between dissociation rate and tunneling current, we argue that the dissociations were inelastically induced with molecular orbital resonances. Our study shows that single molecule association and dissociation can be used to probe spin states and reaction mechanisms in a variety of axial coordination between small molecules and metallo-porphyrins.

  • PDF

Determination of energetically preferable Au-S contact atomic structure in stretched single-molecule junctions

  • Ko, Kwan Ho
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.409-411
    • /
    • 2014
  • Based on the first-principles computations, the nature of the microscopic geometry of the molecule-electrode contacts was addressed. The single-molecule junction was prepared by connecting hexanediothiolate (HDT) to Au(111) electrodes via one, two, and three Au adatoms having coordination number of one (CN1), two (CN2), and, three (CN3), respectively. The contact atomic structure and energy of the stretched Au-HDT-Au junction was observed. The analysis revealed that the contact geometry with lowest coordination number (CN1) is energetically more stable than CN2 and CN3.

  • PDF

Bayesian Multiple Change-Point Estimation for Single Quantum Dot Luminescence Intensity Data (단일 양자점으로부터 발생한 발광세기 변화에 대한 베이지안 다중 변화점 추정)

  • Kima, Jaehee;Kimb, Hahkjoon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • In the field of single-molecule spectroscopy, it is essential to analyze luminescence Intensity changes that result from a single molecule. With the CdSe/ZnS core-shell structured quantum dot photon emission data Bayesian multiple change-point estimation is done with the gamma prior for Poisson parameters and truncated Poisson distribution for the number of change-points.

Single-molecule fluorescence in situ hybridization: Quantitative imaging of single RNA molecules

  • Kwon, Sunjong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.65-72
    • /
    • 2013
  • In situ detection of RNAs is becoming increasingly important for analysis of gene expression within and between intact cells in tissues. International genomics efforts are now cataloging patterns of RNA transcription that play roles in cell function, differentiation, and disease formation, and they are demon-strating the importance of coding and noncoding RNA transcripts in these processes. However, these techniques typically provide ensemble averages of transcription across many cells. In situ hybridization-based analysis methods complement these studies by providing information about how expression levels change between cells within normal and diseased tissues, and they provide information about the localization of transcripts within cells, which is important in understanding mechanisms of gene regulation. Multi-color, single-molecule fluorescence in situ hybridization (smFISH) is particularly useful since it enables analysis of several different transcripts simultaneously. Combining smFISH with immunofluorescent protein detection provides additional information about the association between transcription level, cellular localization, and protein expression in individual cells.

Detection and Manipulation of Spin state of Single Molecule Magnet: Kondo resonance and ESR-STM

  • Komeda, T.;Isshiki, H.;Zhang, Y.F.;Katoh, K.;Yoshida, Y.;Yamashita, M.;Miyasaka, H.;Breedlove, B.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.16-17
    • /
    • 2010
  • Molecular spintronics has attracted attentions, which combines molecular electronics with the spin degree of freedom in electron transport. Among various molecules as candidates of the molecular spintronics, single molecule magnet (SMM) is one of the most promising material. SMM molecules show a ferromagnetic behavior even as a single molecule and hold the spin information even after the magnetic field is turned off. Here in this report, we show the spin behavior of SMM molecules adsorbed on the Au surface by combining the observation of Kondo peak in the STS and ESR-STM measurement. Kondo resonance state is formed near the Fermi level when degenerated spin state interacts with conduction electrons. ESR-STM detects the Larmor frequency of the spin in the presence of a magnet field. The sample include $MPc_2$ and $M_2Pc_3$ molecules ($M\;=\;Tb^{3+}$, $Dy^{3+}$, and $Y^{3+}$ Pc=phthalocyanine) whose critical temperature as a ferromagnet reaches 40 K. A clear Kondo peak was observed which is originated from an unpaired electron in the ligand of the molecule, which is the first demonstration of the Kondo peak originated from electron observed in the STS measurement. We also observed corresponding peaks in ESR-STM spectra. [1] In addition we found that the Kondo peak intensity shows a clear variation with the conformational change of the molecule; namely the azimuthal rotational angle of the Pc planes. This indicates that the Kondo resonance is correlated with the molecule electronic state. We examined this phenomena by using STM manipulation technique, where pulse bias application can rotate the relative azimuthal angle of the Pc planes. The result indicates that an application of ~1V pulse to the bias voltage can rotate the Pc plane and the Kondo peaks shows a clear variation in intensity by the molecule's conformational change.

  • PDF