• Title/Summary/Keyword: single loop control

Search Result 303, Processing Time 0.022 seconds

Development and Application of the High Speed Weigh-in-motion for Overweight Enforcement (고속축하중측정시스템 개발과 과적단속시스템 적용방안 연구)

  • Kwon, Soon-Min;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.69-78
    • /
    • 2009
  • Korea has achieved significant economic growth with building the Gyeongbu Expressway. As the number of new road construction projects has decreased, it becomes more important to maintain optimal status of the current road networks. One of the best ways to accomplish it is weight enforcement as active control measure of traffic load. This study is to develop High-speed Weigh-in-motion System in order to enhance efficiency of weight enforcement, and to analyze patterns of overloaded trucks on highways through the system. Furthermore, it is to review possibilities of developing overweight control system with application of the HS-WIM system. The HS-WIM system developed by this study consists of two sets of an axle load sensor, a loop sensor and a wandering sensor on each lane. A wandering sensor detects whether a travelling vehicle is off the lane or not with the function of checking the location of tire imprint. The sensor of the WIM system has better function of classifying types of vehicles than other existing systems by detecting wheel distance and tire type such as single or dual tire. As a result, its measurement errors regarding 12 types of vehicle classification are very low, which is an advantage of the sensor. The verification tests of the system under all conditions showed that the mean measurement errors of axle weight and gross axle weight were within 15 percent and 7 percent respectively. According to the WIM rate standard of the COST-323, the WIM system of this study is ranked at B(10). It means the system is appropriate for the purpose of design, maintenance and valuation of road infrastructure. The WIM system in testing a 5-axle cargo truck, the most frequently overloaded vehicle among 12 types of vehicles, is ranked at A(5) which means the system is available to control overloaded vehicles. In this case, the measurement errors of axle load and gross axle load were within 8 percent and 5 percent respectively. Weight analysis of all types of vehicles on highways showed that the most frequently overloaded vehicles were type 5, 6, 7 and 12 among 12 vehicle types. As a result, it is necessary to use more effective overweight enforcement system for vehicles which are seriously overloaded due to their lift axles. Traffic volume data depending upon vehicle types is basic information for road design and construction, maintenance, analysis of traffic flow, road policies as well as research.

  • PDF

Clinicopathologic Characteristics and Prognoses for Multicentric Occurrence and Intrahepatic Metastasis in Synchronous Multinodular Hepatocellular Carcinoma Patients

  • Li, Shi-Lai;Su, Ming;Peng, Tao;Xiao, Kai-Yin;Shang, Li-Ming;Xu, Bang-Hao;Su, Zhi-Xiong;Ye, Xin-Ping;Peng, Ning;Qin, Quan-Lin;Chen, De-Feng;Chen, Jie;Li, Le-Qun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.217-223
    • /
    • 2013
  • Background: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the outcomes for patients are still poor. It is important to determine the original type of synchronous multinodular HCC for preoperative assessment and the choice of treatment therapy as well as for the prediction of prognosis after treatment. Aims: To analyze clinicopathologic characteristics and prognoses in patients with multicentric occurrence (MO) and intrahepatic metastasis (IM) of synchronous multinodular hepatocellular carcinoma (HCC). Methods: The study group comprised 42 multinodular HCC patients with a total of 112 nodules. The control group comprised 20 HCC patients with 16 single nodular HCC cases and 4 HCC cases with a portal vein tumor emboli. The mitochondrial DNA (mtDNA) D-loop region was sequenced, and the patients of the study group were categorized as MO or IM based on the sequence variations. Univariate and multivariate analyses were used to determine the important clinicopathologic characteristics in the two groups. Results: In the study group, 20 cases were categorized as MO, and 22 as IM, whereas all 20 cases in the control group were characterized as IM. Several factors significantly differed between the IM and MO patients, including hepatitis B e antigen (HBeAg), cumulative tumor size, tumor nodule location, cirrhosis, portal vein and/or microvascular tumor embolus and the histological grade of the primary nodule. Multivariate analysis further demonstrated that cirrhosis and portal vein and/or microvascular tumor thrombus were independent factors differentiating between IM and MO patients. The tumor-free survival time of the MO subjects was significantly longer than that of the IM subjects ($25.7{\pm}4.8$ months vs. $8.9{\pm}3.1$ months, p=0.017). Similarly, the overall survival time of the MO subjects was longer ($31.6{\pm}5.3$ months vs. $15.4{\pm}3.4$ months, p=0.024). The multivariate analysis further demonstrated that the original type (p=0.035) and Child-Pugh grade (p<0.001) were independent predictors of tumor-free survival time. Cirrhosis (p=0.011), original type (p=0.034) and Child-Pugh grade (p<0.001) were independent predictors of overall survival time. Conclusions: HBeAg, cumulative tumor size, tumor nodule location, cirrhosis, portal vein and/or microvascular tumor embolus and histological grade of the primary nodule are important factors for differentiating IM and MO. MO HCC patients might have a favorable outcome compared with IM patients.

Organization and function of shoot apical meristem affecting growth and development in plants (식물의 생장과 발달에 영향을 미치는 슈트 정단분열조직의 체제와 기능)

  • Lee, Kyu Bae
    • Journal of Plant Biotechnology
    • /
    • v.41 no.4
    • /
    • pp.180-193
    • /
    • 2014
  • In plants, a shoot apex has a small region known as the shoot apical meristem (SAM) having a group of dividing (initiating) cells. The SAM gives rise to all the groundabove structures of plants throughout their lifetime, and thus it plays important role in growth and development of plants. This review describes theories to explain the SAM organization and function developed over the last 250 years. Since in 1759 German botanist C. F. Wolff has described firstly the SAM, in 1858 Swiss botanist C. N${\ddot{a}}$geli proposed the apical cell theory from the observation of a large single apical cell in the SAM of seedless vascular plants: however, this view was recognized to be unsuitable to seed plants. In 1868, German botanist J. Hanstein suggested the histogen theory: this concept subdividing the SAM into dermatogen, periblem, and plerome was unable to generally apply to seed plants. In 1924, German botanist A. Schmidt proposed the tunica-corpus theory from the examination of angiosperm SAM in which two parts show different planes of cell division: this theory was proved to be not suitable to gymnosperm SAM, not have stable surface tunica layer. In 1938, American botanist A. Foster described zones in gymnosperm SAM based on the cytohistologic differentiation and thus called it a cytohistological zonation theory. With works by E. Gifford, in 1954, this zonation pattern was demonstrated to be also applicable to angiosperm SAM. As another theory, in 1952 French botanist R. Buvat proposed the m${\acute{e}}$rist${\grave{e}}$me d'attente (waiting meristem) theory: however, this concept was confuted because of its negation of function during vegetative growth phase to central initial cells. Rescent studies with Arabidopsis thaliana have found that formation and maintenance of the SAM are under the control of selected genes: SHOOTMERISTEMLESS (STM) gene forms the SAM, and WUSCHEL (WUS) and CLAVATA (CLV) genes function in maintaining the SAM; signaling between WUS and CLV genes act through a negative feedback loop.