In wireless X networks where all transmitters send the independent messages to all receivers, the theoretical bound on the degrees of freedom (DOF) and interference alignment (IA) scheme for its achievability are given by Cadambe and Jafar [1]. However, IA scheme for wireless X network may be infeasible in practice unless the transmitters have the perfect channel information. In addition, if the transmitter with single antenna uses time-varying channel coefficients as a beamforming vector, the infinite channel extension is required to achieve the theoretical bound on the DOF of wireless X networks with perfect IA scheme. In this paper, we consider K-user MIMO X network where K transmitters and K receivers have M antennas each. While the beamforming vectors have been constructed with multiple channel uses over multiple time slot in the earlier work, we consider the beamforming vectors constructed only by a spatial signature over unit time. Accordingly the channel information at the transmitters can be available instantaneously. Then we propose the perfect IA scheme with no channel extension. Based on our sum-rate analysis and the simulation results, we confirm that our proposed scheme can achieve MK/2 DOF which is quite close to the theoretical bound on the DOF region of wireless X networks.
경량전철시스템은 대도시내 주요 거점을 연결하는 간선교통, 지하철 노선이 닿지 못하는 지역의 교통수요를 기존 지하철에 연결시키는 개념의 지선 및 순환교통, 그리고 공항, 위락지역 등 대단위 교통 밀집지역의 접근교통 등의 역할을 한다. LIM, 노면전차, 모노레일 도입시 시장성과 경제성분석을 통해 각 시스템의 도입 타당성을 제시하고 국내 환경에 적합한 시스템 개발 및 향후 국외 시장의 선점효과를 정량적으로 제시하고자 하였다. 이에 경량전철의 특징 및 국내외 도입현황을 분석하였으며, 경제적 타당성 분석을 위해 산업연관분석을 하여 매출 및 부가가치를 전망하고 최종적으로 비용-편익 분석을 수행한 결과 대상 시스템 모두 경제성이 있는 것으로 분석되었다. 이러한 비용편익비율은 향후 경량전출 도입은 효율성으로 의미하기 보다는 사업성의 유무 판단으로 사용하는 것이며, 모든 시스템에 있어 경제성이 있는 것으로 판단된 만큼, 노선별 특성에 맞는 시스템 도입을 위한 다양한 방식의 경량전철 개발이 필요함을 알 수 있다.
상향링크 SIMO(Single Input Multiple Output) 시스템의 SC-FDMA 기법에서 공간 및 주파수 다이버시티 이득에 따른 BER(Bit Error Ratio) 성능 변화를 분석한다. 본 논문에서 분석한 주요내용은 다음과 같다. 첫째, 공간 다이버시티 컴바이닝과 주파수 다이버시티 컴바이닝을 동시에 수행할 수 있는 통합된 시스템과 공간 다이버시티 컴바이닝과 주파수 다이버시티 컴바이닝을 순서대로 수행하는 단계별 시스템이 동등한 성능을 가지는 것을 확인한다. 단계별 시스템의 주파수 다이버시티 컴바이닝 기법과 통합된 시스템의 다이버시티 컴바이닝 기법이 동일할 때, 단계별 시스템에서 주파수 다이버시티 컴바이닝보다 공간 다이버시티 컴바이닝을 선행하면서 공간 다이버시티 컴바이닝 기법을 MRC(Maximal Ratio Combining)로 하면 두 시스템의 성능이 동일함을 신호 모형화 결과를 통해 증명한다. 둘째, 신호 모형화 결과와 BER 실험 결과를 통해 공간 다이버시티 이득과 주파수 다이버시티 이득이 각각 성능에 어떤 영향을 미치는지 분석한다. 부반송파 개수가 증가함에 따라 주파수 다이버시티 이득이 증가함을 알 수 있고 이는 주파수 다이버시티 기법이 ZF(Zero Forcing)일 때의 성능과 MMSE(Minimum Mean Square Error)일 때의 성능 차이는 유지하면서 높은 SNR(Signal to Noise Ratio) 영역의 성능 향상에 영향을 미치는 것을 보인다. 그리고 수신안테나 개수의 증가는 공간 다이버시티 이득을 증가시키며 공간 다이버시티 이득의 증가는 모든 SNR 영역의 성능을 향상시키면서 주파수 다이버시티 컴바이닝이 ZF일 때와 MMSE일 때의 성능 차이를 줄이는데 영향을 미침을 보여준다. 마지막으로, 공간 다이버시티 이득이 신호 모형화 유도과정에서 어떤 영향을 미치는지 분석하여 수신안테나 개수가 6개 이상이면 주파수 다이버시티 컴바이닝을 ZF으로 했을 때의 성능이 MMSE로 했을 때의 성능을 대체할 수 있음을 확인할 수 있다.
상업용 12인치 급속가열장치(RTP)의 다변수 고급제어기를 개발하기 위하여 열전대가 부착된 웨이퍼를 대상으로 다변수 모델인식을 수행하였다. 웨이퍼에는 7개의 열전대가 설치되어 있으며 10개의 텅스텐-할로겐 램프 그룹으로 가열을 할 수 있다. 모델인식 실험과정에서 웨이퍼의 휨을 최소화하며 최종적으로 10-입력 7-출력의 균형 잡힌 상태공간 모델을 얻기 위한 모델인식방법을 제안하였다. 또한 넓은 온도영역에서 복사에 의한 비선형성을 가장 효과적으로 상쇄시킬 수 있는 출력변수 정의방법을 제안하였다. 600, 700, $800^{\circ}C$ 부근의 정상상태에서 실험을 수행하여 모델을 추정한 결과 상태의 차수는 80~100, 모델출력은 $y=T(K)^2$으로 결정하는 것이 바람직하며, 이때 one-step-ahead 온도예측 오차의 제곱평균은 0.125~0.135 K 정도로 나타났다.
본 논문에서는 일반화된 공간천이변조시스템에서 신호 복원 성능의 개선을 위하여 병렬 직교매칭퍼슛 기술을 이용한 신호 검출기법을 제안하고 그 성능을 분석한다. 일반화된 공간천이변조 시스템에서 수신신호의 복원은 압축 센싱에서 성긴신호 복원과 매우 유사하다. 성긴 신호 복원에서 자주 사용되는 직교매칭퍼슛 기법은 매 반복과정에서 수신 신호와 채널 행렬과의 상관도가 높은 인덱스를 송신신호의 Nonzero 인덱스로 1개씩 선택한다. 반면 제안된 POMP기법에서는 수신신호를 이용하여 첫 번째 반복과정에서 채널행렬과의 상관도가 높은 인덱스를 복수(M)개 선택한 후, 선택된 M개의 인덱스를 초기 인덱스로 하는 M개의 OMP과정을 병렬적으로 수행한다. 최종적으로 각 OMP과정에서 복원된 신호 중 수신된 신호와 복원신호사이의 잔차 (Residual)가 가장 작은 후보 신호를 최종 복원 신호로 선택한다. 본 논문에서는 POMP기법에 양자화기법을 결합한 알고리즘도 함께 제안한다. 제안된 POMP알고리즘은 OMP대비 M배의 복잡도를 갖지만 신호 복원 성능은 매우 탁월하다.
코드분할다중접속(CDMA)시스템의 역방향에서 사용할 수 있는 스마트안테나의 새로운 빔 형성 알고리듬을 제안하였다. 제안된 알고리듬은 적응 빔 형성을 위하여 Least Mean Square 알고리듬과 Conjugate Gradient 알고리듬을 직렬 연결한 것으로 차선의 웨이트벡터를 생성한다. 웨이트벡터의 갱신은 원하는 사용자 신호의 전력이 다른 신호 즉 간섭신호들의 전력보다 훨씬 크다는 가정 하에 수신기의 PN 상관기에 의한 역확산의 뒷단인 심벌 계층에서 이루어진다. 제안된 알고리듬은 웨이트 갱신을 위한 한 번의 과정에서 안테나 숫자의 다섯 배에 해당하는 O(5N)의 낮은 계산량을 요구한다. 제안된 알고리듬의 웨이트벡터가 평형상태에 도달했을 때의 출력 신호대간섭잡음비(SINR)가 수식으로 표현되었고 제안된 알고리듬에 의한 스마트안테나가 한 개의 안테나로 구성된 재래의 시스템보다 출력 SINR을 월등히 향상시키는 것이 모의실험에 의해 입증되었다. CGM-LMS 접목 알고리듬의 과도 상태에서의 웨이트벡터 수렴특성이 CGM 이나 LMS 알고리듬의 과도상태 수렴특성보다 우수하다는 것이 역시 모의실험에서 보여 졌고 빔 형성기 입력 신호대잡음비가 변화할 때의 BER 특성이 설명되었다.
최근의 급변하는 시장 상황의 변화와 제품의 수요에 대한 다양한 요구는 회분식 공정에 의한 다품종 소량생산으로의 전환을 가져오게 하였다. 이러한 회분식 공정은 주로 정밀 화학 관련 제품들인 의약품, 생화학 제품, 농약, 고분자 소재 등의 생산에 사용되어 왔지만, 근래에는 윤활유, 섬유, 석유 화학, 식품 같은 제품의 생산에도 널리 적용되고 있다. 그러나 회분식 공정은 원료의 공급, 제품의 가격 등과 같은 불확실 변수에 의한 조업의 변화가 자주 발생하는 단점이 있다. 이러한 조업의 변화는 조업시간의 변동과 각 부분별 예측량이 달라져 시장 경쟁력을 잃게 된다. 이에 공급망 상에 위치한 각 부서별, 기업별 협력과 조정을 통한 총체적 관점에서의 최적화를 추구하는 공급사슬 관리에 관한 관심이 고도되고 있다. 이에 본 논문에서는 회분식 공정에 공급사슬 관리 기법을 도입하여 원자재의 구매에서부터 분배에 이르는 전과정에 대한 총체적인 최적해를 찾고 각 공급사슬간의 영향력을 조사, 분석하였다. 또한 본 논문에서는 생산계획과 상세일정계획 모델의 통합과 수요에 대한 단계별 예측을 통해 시장 변화와 불확실 변수(uncertainty)에 대한 적절한 대응방안을 모색하여, 회분식 공정에서의 공급사슬 관리 모델을 개발하였다. 이와 함께 각각의 공급사슬간 인터페이스를 통하여 정보와 물류의 통합이 이루어지게 하여, 실제 주문과 수요의 변화에 대하여 생산계획, 구매계획, 일정계획 및 분배계획을 수립하여 안정적인 공급이 이루어지게 하였다.
앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.
오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.