• Title/Summary/Keyword: single crack

Search Result 515, Processing Time 0.024 seconds

A Study on Tensile Restraint Crack Critical Stress Characteristcs of Gravity-Wet-Type Underwater Welded Joints (중력식 습식 수중용접부의 인강구속균열 임계응력 특성에 관한 연구)

  • Sae Kyoo Oh;Moon Ho Kang;Sang Deok Han
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.2
    • /
    • pp.15-15
    • /
    • 1987
  • In this study, the characteristics of TRC (tensile restraint crack) critical stress in the gravity type underwater wet welding process and in the in-air welding have been investigated for Y, y and 45°r grooves using the KR Grade A-3 steel plates and the E4303 covered electrodes. The following results were obtained: (1) In the TRC tests, the initial critical stress of Y groove is higher than those of the 45°r single bebel grooves in both in-air and underwater weldings, and the cold fracture sensitivity is higher in the underwater welding than in the in-air welding. (2) The hardness of underwater weld metal is the highest in heat affected zone is about Hk 365 in the in-air weld but Hk 670 in the underwater weld which is higher for cooling speed is more rapid, resulting in the lower critical stress by increase of fracture sensitivity. (3) The diffusible hydrogen quantity for 48 hours is about 18cc/100g-weld-metal in the in-air welding but 48cc/100g-weld-metal in the underwater welding. So that, in the case of underwater welding the diffusible hydrogen penetrates about 3 times more than that in the in-air welding.

Solvothermal Synthesis and Characterization of Cu3(BTC)2 Tubular Membranes Using Surface Modified Supports (표면 개질된 지지체를 이용한 Cu3(BTC)2 튜브형 분리막의 용매열 합성 및 특성분석)

  • Noh, Seung-Jun;Kim, Jinsoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.214-218
    • /
    • 2014
  • In this study, nanoporous $Cu_3(BTC)_2$ membranes were synthesized on macroporous alumina tube supports by solvothermal method. It is very difficult to prepare uniform and crack-free $Cu_3(BTC)_2$ layer on macroporous alumina support by in situ solvothermal method. In this study, continuous and crack-free $Cu_3(BTC)_2$ tubular membranes could be obtained by in situ solvothermal process after surface modification of alumina support. The surface modification was conducted by spraying Cu precursor solution on the alumina support heated at $200^{\circ}C$. The prepared $Cu_3(BTC)_2$ tubular membranes were characterized by XRD, FE-SEM and gas permeation experiments. $H_2$ permeance through $5{\mu}m$ thick $Cu_3(BTC)_2$ tubular membrane was calculated to be $7.8{\times}10^{-7}mol/s{\cdot}m^2{\cdot}Pa$ by single gas permeation test, with the ideal selectivities of $H_2/N_2=11.94$, and $H_2/CO_2=12.82$.

A Study on Analysis Technique for Chloride Penetration in Cracked Concrete under Combined Deterioration (복합열화에 노출된 균열부 콘크리트 내의 염화물 침투 해석 기법에 대한 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Byun, Keun-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.359-366
    • /
    • 2007
  • Recently, analysis researches on durability are focused on chloride attack and carbonation due to increased social and engineering significance. Generally, chloride penetration and carbonation occur simultaneously except for in submerged condition and chloride behavior in carbonated concrete is evaluated to be different from that in normal concrete. Furthermore, if unavoidable crack occurs in concrete, it influences not only single attack but also coupled deterioration more severely. This is a study on analysis technique with system dynamics for chloride penetration in concrete structures exposed to coupled chloride attack and carbonation through chloride diffusion, permeation, and carbonation reaction. For the purpose, a modeling for chloride behavior considering diffusion and permeation is performed through previous models for early-aged concrete such as MCHHM (multi component hydration heat model) and MPSFM (micro pore structure formation). Then model for combined deterioration is developed considering changed characteristics such as pore distribution, saturation and dissociation of bound chloride content under carbonation. The developed model is verified through comparison with previous experimental data. Additionally, simulation for combined deterioration in cracked concrete is carried out through utilizing previously developed models for chloride penetration and carbonation in cracked concrete. From the simulated results, CCTZ (chloride-carbonation transition zone) for evaluating combined deterioration is proposed. It is numerically verified that concrete with slag has better resistance to combined deterioration than concrete with OPC in sound and cracked concrete.

Preparation of Silica Films by Surface Tension Control (표면장력 제어를 이용한 실리카 박막의 제조)

  • Lee, Jae-Jun;Kim, Yeong-Ung;Jo, Un-Jo;Kim, In-Tae;Je, Hae-Jun;Park, Jae-Gwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.804-809
    • /
    • 1999
  • Silica films were prepared on Si single crystal substrates by a sol-gel process without DMF using TEOS as a starting material. Films were fabricated by spin coating technique. For films having a composition of TEOS : HCI(1:0.05mol), gelation time, the thickness of films, the formation of cracks and the microstructure of the films were investigated as a function of the molar ratio of $CH_3OH and H_2O$. With 8mol $CH_3OH$, the longest gelation time was measured to be 640hr. The thickness of the coated films was decreased with increasing content of $CH_3OH$. The films were sintered at $500^{\circ}C$ for 1hr with a heating rate of $0.6^{\circ}C$/min. The coated films showed worm-like grains and partially cracked microstructures at an amount of $CH_3OH$ 2mol and 4mol. The addition of more than 8 mole of $CH_2OH$ resulted in crack-free silica films. This suggests that crack-free films can be fabricated by controlling the surface tension energy of the sol solutions without DMF.

  • PDF

Application of Ordinary Kriging Interpolation Method for p-Adaptive Finite Element Analysis of 2-D Cracked Plates (2차원 균열판의 p-적응적 유한요소해석을 위한 정규크리깅 보간법의 적용)

  • Woo, Kwang-Sung;Jo, Jun-Hyung;Park, Mi-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.429-440
    • /
    • 2006
  • This paper comprises two specific objectives. The first is to examine the applicability of ordinary kriging interpolation(OK) to the p-adaptivity of the finite element method that is based on variogram modeling. The second objective Is to present the adaptive procedure by the hierarchical p-refinement in conjunction with a posteriori error estimator using the modified S.P.R. (superconvergent patch recovery) method. The ordinary kriging method that is one of weighted interpolation techniques is applied to obtain the estimated exact solution from the stress data at the Gauss points. The weight factor is determined by experimental and theoretical variograms for interpolation of stress data apart from the conventional interpolation methods that use an equal weight factor. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. To verify the performance of the modified S.P.R. method, the new error estimator based on limit value has been proposed. The validity of the proposed approach has been tested with the help of some benchmark problems of linear elastic fracture mechanics such as a centrally cracked panel, a single edged crack, and a double edged crack.

Experimental Study on Fatigue Characteristics of the Single Spot Welded Joint (점용접재(点熔接材)의 피로(疲勞) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Chang-Min Suh;Sung-Soo Kang;Nam-Seong Hwang;Yong-Ich Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.214-226
    • /
    • 1992
  • In this paper, the characteristics of fatigue crack growth in the spot welded joint of the same kinds of specimens($HS{\times}HS,\;GA{\times}GAB$) and different kinds of specimens($HS{\times}GA,\;HS{\times}GAB$) which consist of dual phase high strength steel(HS) and monogalvanized steel(GA) were examined with static tension tests and axial tension fatigue tests. Some of the important results are as follows : 1. The divergence of tensile strengths among the same and different kinds of spot welds under the same conditions is comparatively low regardless of the difference of stiffness. 2. At the low load bevel and long life legion, the fatigue crack is initiated near the nugget. However, in the high load level and short life region, it occurs a tittle far from the nugget. 3. It has shown a linear relation between maximum stress Intensity factor, Kmax and fatigue life, $N_f$ among each of the spot welds and has gathered in a narrow band on the log-log graph paper. $Kmax=H{\cdot}{N_f}^{P}$ where H and P are a material constant.

  • PDF

Performance of laterally loaded piles considering soil and interface parameters

  • Fatahi, Behzad;Basack, Sudip;Ryan, Patrick;Zhou, Wan-Huan;Khabbaz, Hadi
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.495-524
    • /
    • 2014
  • To investigate the soil-pile interactive performance under lateral loads, a set of laboratory model tests was conducted on remoulded test bed of soft clay and medium dense sand. Then, a simplified boundary element analysis had been carried out assuming floating pile. In case of soft clay, it has been observed that lateral loads on piles can initiate the formation of a gap, soil heave and the tension crack in the vicinity of the soil surface and the interface, whereas in medium dense sand, a semi-elliptical depression zone can develop. Comparison of test and boundary element results indicates the accuracy of the solution developed. However, in the boundary element analysis, the possible shear stresses likely to be developed at the interface are ignored in order to simplify the existing complex equations. Moreover, it is unable to capture the influence of base restraint in case of a socketed pile. To bridge up this gap and to study the influence of the initial stress state and interface parameters, a field based case-study of laterally-loaded pile in layered soil with socketed tip is explored and modelled using the finite element method. The results of the model have been verified against known field measurements from a case-study. Parametric studies have been conducted to investigate the influence of the coefficient of lateral earth pressure and the interface strength reduction factor on the results of the model.

A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 - (오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • v.18 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

Effect of PZN addition on microstructure of PZT thick films by aerosol deposition process (에어로졸 증착법에 의한 PZT 후막의 미세구조에 미치는 PZN 첨가의 영향)

  • Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Lead zinc niobate (PZN) added lead zirconate titanate (PZT) thick films with thickness of $5{\sim}10{\mu}m$ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and 40 %. The initial particles (PZT, 2PZN-8PZT, 4PZN-6PZT) had irregular shape and submicron sizes. The as-deposited film had fairly dense microstructure without any crack, and showed only a perovskite single phase formed with nano-sized grains. The as-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$, and the films deposited on sapphire were annealed at $900^{\circ}C$ in the electrical furnace. The effects of PZN addition on the microstructural evolution were observed using by FE-SEM and HR-TEM.

A study on the analysis of the failure probability based on the concept of loss probability (결손확률모델에 의한 파손확률 해석에 관한 연구)

  • 신효철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2037-2047
    • /
    • 1991
  • Strength is not simply a single given value but rather is a statistical one with certain distribution functions. This is because it is affected by many unknown factors such as size, shape, stress distribution, and combined stresses. In this study, a model of loss probability is proposed in view of the fact that one of the fundamental configuration of nature is hexagonal, for example, the shapes of lattice unit, grain, and so on. The model sues the concept of loss of certain element in place of Jayatilaka-Trustrum's length and angle of cracks. Using this model, the loss probability due to each loss of certain elements is obtained. Then, the maximum principal stress is calculated by the finite element method at the centroid of the elements under the tensile load for the 4,095 models of analysis. Finally, the failure probability of the brittle materials is obtained by multiplying the loss probability by the ratio of the maximum principal stress to theoretical tensile strength. Comparison of the result of the Jayatilaka-Trustrum's model and the proposed model shows that the failure probabilities by the two methods are in good agreement. Further, it is shown that the parametric relationship of semi-crack lengths for various degrees of birittleness can be determined. Therefore, the analysis of the failure probability suing the proposed model is shown to be promising as a new method for the study of the failure probability of birttle materials.