• Title/Summary/Keyword: simultaneous resolution

Search Result 153, Processing Time 0.025 seconds

Determination of Soluble Carbohydrates in Soybean Seeds Using High Performance Liquid Chromatography with Evaporative Light Scattering Detection (증기화광산란 검출기를 이용한 콩 함유 수용성 탄수화물의 분석)

  • Kim, Gyeong-Ha;Hwang, Young-Sun;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Kim, Min-Ji;Hong, Seung-Beom;Moon, Jung-Kyeong;Choung, Myoung-Gun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.7
    • /
    • pp.1062-1067
    • /
    • 2014
  • In the present study, a new analytical method was devised for the simultaneous determination of soluble carbohydrates in soybean seeds using high performance liquid chromatography/evaporative light scattering detection (HPLC/ELSD). The limit of quantification (LOQ) for soybean soluble carbohydrates ranged from 5.6~7.6 mg/kg using the HPLC/ELSD method and from 16.2~33.9 mg/kg using the high performance liquid chromatography/refractive index detection (HPLC/RID) method. Therefore, the HPLC/ELSD method was more sensitive than HPLC/RID. The precision values for retention time and peak area of the HPLC/ELSD method were evaluated by inter-day (n=5) and intra-day (n=10) assays using a standard solution. All precision values (CV<2.5%) for soybean soluble carbohydrates were acceptable and fulfilled international acceptance criteria. All linear calibration curves were obtained with a correlation coefficient of $R^2$ >0.999. The contents of soluble carbohydrates for the "Shingikong" (yellow soybean) and "Cheongjakong 3" (black soybean) samples were analyzed using the HPLC/RID and HPLC/ELSD methods. The difference in carbohydrate contents between the two detection methods was significant. Carbohydrate contents in the HPLC/ELSD method were higher than those in the HPLC/RID method. Overall, the HPLC/ELSD method showed satisfactory resolution with a favorable LOQ and reproducibility. Therefore, these results indicate that the HPLC/ELSD method may be applied to determine the contents of soluble carbohydrates in soybean seeds and related food stuffs.

CCD Photometric Observations and Light Curve Synthesis of the Near-Contact Binary XZ Canis Minoris (근접촉쌍성 XZ CMi의 CCD 측광관측과 광도곡선 분석)

  • Kim, Chun-Hwey;Park, Jang-Ho;Lee, Jae-Woo;Jeong, Jang-Hae;Oh, Jun-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • Through the photometric observations of the near-contact binary, XZ CMi, new BV light curves were secured and seven times of minimum light were determined. An intensive period study with all published timings, including ours, confirms that the period of XZ CMi has varied in a cyclic period variation superposed on a secular period decrease over last 70 years. Assuming the cyclic change of period to occur by a light-time effect due to a third-body, the light-time orbit with a semi-amplitude of 0.0056d, a period of 29y and an eccentricity of 0.71 was calculated. The observed secular period decrease of $-5.26{\times}10^{-11}d/P$ was interpreted as a result of simultaneous occurrence of both a period decrease of $-8.20{\times}10^{-11}d/P$ by angular momentum loss (AML) due to a magnetic braking stellar wind and a period increase of $2.94{\times}10^{-11}d/P$ by a mass transfer from the less massive secondary to the primary components in the system. In this line the decreasing rate of period due to AML is about 3 times larger than the increasing one by a mass transfer in their absolute values. The latter implies a mass transfer of $\dot{M}_s=3.21{\times}10^{-8}M_{\odot}y^{-1}$ from the less massive secondary to the primary. The BV light curves with the latest Wilson-Devinney binary code were analyzed for two separate models of 8200K and 7000K as the photospheric temperature of the primary component. Both models confirm that XZ CMi is truly a near-contact binary with a less massive secondary completely filling Roche lobe and a primary inside the inner Roche lobe and there is a third-light corresponding to about 15-17% of the total system light. However, the third-light source can not be the same as the third-body suggested from the period study. At the present, however, we can not determine which one between two models is better fitted to the observations because of a negligible difference of $\sum(O-C)^2$ between them. The diversity of mass ratios, with which previous investigators were in disagreement, still remains to be one of unsolved problems in XZ CMi system. Spectroscopic observations for a radial velocity curve and high-resolution spectra as well as a high-precision photometry are needed to resolve some of remaining problems.

A Refined Method for Quantification of Myocardial Blood Flow using N-13 Ammonia and Dynamic PET (N-13 암모니아와 양전자방출단층촬영 동적영상을 이용하여 심근혈류량을 정량화하는 새로운 방법 개발에 관한 연구)

  • Kim, Joon-Young;Lee, Kyung-Han;Kim, Sang-Eun;Choe, Yearn-Seong;Ju, Hee-Kyung;Kim, Yong-Jin;Kim, Byung-Tae;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.1
    • /
    • pp.73-82
    • /
    • 1997
  • Regional myocardial blood flow (rMBF) can be noninvasively quantified using N-13 ammonia and dynamic positron emission tomography (PET). The quantitative accuracy of the rMBF values, however, is affected by the distortion of myocardial PET images caused by finite PET image resolution and cardiac motion. Although different methods have been developed to correct the distortion typically classified as partial volume effect and spillover, the methods are too complex to employ in a routine clinical environment. We have developed a refined method incorporating a geometric model of the volume representation of a region-of-interest (ROI) into the two-compartment N-13 ammonia model. In the refined model, partial volume effect and spillover are conveniently corrected by an additional parameter in the mathematical model. To examine the accuracy of this approach, studies were performed in 9 coronary artery disease patients. Dynamic transaxial images (16 frames) were acquired with a GE $Advance^{TM}$ PET scanner simultaneous with intravenous injection of 20 mCi N-13 ammonia. rMBF was examined at rest and during pharmacologically (dipyridamole) induced coronary hyperemia. Three sectorial myocardium (septum, anterior wall and lateral wall) and blood pool time-activity curves were generated using dynamic images from manually drawn ROIs. The accuracy of rMBF values estimated by the refined method was examined by comparing to the values estimated using the conventional two-compartment model without partial volume effect correction rMBF values obtained by the refined method linearly correlated with rMBF values obtained by the conventional method (108 myocardial segments, correlation coefficient (r)=0.88). Additionally, underestimated rMBF values by the conventional method due to partial volume effect were corrected by theoretically predicted amount in the refined method (slope(m)=1.57). Spillover fraction estimated by the two methods agreed well (r=1.00, m=0.98). In conclusion, accurate rMBF values can be efficiently quantified by the refined method incorporating myocardium geometric information into the two-compartment model using N-13 ammonia and PET.

  • PDF