• 제목/요약/키워드: simultaneous localization and mapping

검색결과 130건 처리시간 0.025초

Multi-robot Mapping Using Omnidirectional-Vision SLAM Based on Fisheye Images

  • Choi, Yun-Won;Kwon, Kee-Koo;Lee, Soo-In;Choi, Jeong-Won;Lee, Suk-Gyu
    • ETRI Journal
    • /
    • 제36권6호
    • /
    • pp.913-923
    • /
    • 2014
  • This paper proposes a global mapping algorithm for multiple robots from an omnidirectional-vision simultaneous localization and mapping (SLAM) approach based on an object extraction method using Lucas-Kanade optical flow motion detection and images obtained through fisheye lenses mounted on robots. The multi-robot mapping algorithm draws a global map by using map data obtained from all of the individual robots. Global mapping takes a long time to process because it exchanges map data from individual robots while searching all areas. An omnidirectional image sensor has many advantages for object detection and mapping because it can measure all information around a robot simultaneously. The process calculations of the correction algorithm are improved over existing methods by correcting only the object's feature points. The proposed algorithm has two steps: first, a local map is created based on an omnidirectional-vision SLAM approach for individual robots. Second, a global map is generated by merging individual maps from multiple robots. The reliability of the proposed mapping algorithm is verified through a comparison of maps based on the proposed algorithm and real maps.

실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성 (LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments)

  • 이로운;박정홍;홍성훈
    • 로봇학회논문지
    • /
    • 제18권2호
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권5호
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

자율주행 장치를 위한 특징 맵 기반 SLAM (SLAM based on feature map for Autonomous vehicle)

  • 김정민;정승영;전태룡;김성신
    • 한국정보통신학회논문지
    • /
    • 제13권7호
    • /
    • pp.1437-1443
    • /
    • 2009
  • 본 논문에서는 초음파와 전자나침반, 엔코더, 자이로센서를 복합적으로 구성하여 로봇의 SLAM 방법을 제시하였다. 일반적으로 전자 나침반과 엔코더, 자이로를 이용한 로봇의 위치측정은 작업공간에서의 상대위치만을 알 수 있다. 실제 로봇이 작업공간에서 작업을 하기 위해서는 로봇의 절대위치 정보를 알아야만 하며, 이는 SLAM으로 얻을 수 있다. 본 논문에서는SLAM 구현을 위하여 로봇의 작업공간을 초음파 센서를 이용하여 구조적 맵 생성 기법을 통해 맵을 생성한 후, 이를 특정 맵으로 변환하였다. 생성된 특정 맵과 맵 매핑을 활용하여 맵 상의 절대위치를 구한다. 실험은 직접 설계 및 제작한 로봇을 이용하였고, 실험 방법은 초기 좌표를 모르는 로봇을 임의의 장소에 위치 시키고 제안한 SLAM 알고리즘을 이용하여 로봇의 전역 좌표를 찾도록 하였다. 실험 결과, 제안한 SLAM 알고리즘을 이용하여 맵 상의 절대위치를 모두 찾음을 확인하였다.

장애인을 위한 스마트 모빌리티 시스템 개발 (Development of Smart Mobility System for Persons with Disabilities)

  • 유영준;박세은;안태준;양지호;이명규;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권4호
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근 (A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures)

  • 원대희;양광웅;최무성;박상덕;이호길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Partial Compatibility Test 를 이용한 로봇의 위치 추정 및 매핑의 Data Association (Data Association of Robot Localization and Mapping Using Partial Compatibility Test)

  • 염서군;최윤성;무경;한창수
    • 한국정밀공학회지
    • /
    • 제33권2호
    • /
    • pp.129-138
    • /
    • 2016
  • This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출 (Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning)

  • 강태욱
    • 한국산학기술학회논문지
    • /
    • 제21권3호
    • /
    • pp.312-320
    • /
    • 2020
  • 3D 스캐닝과 역설계 기술은 기계/제조 분야에서 먼저 시작하였다. 건설 분야에서는 BIM(Building Information Modeling) 기반 3D 모델링 활용 환경이 조성되어 3D 스캐닝 기술을 이용하여 공장 사전제작, 구조물 시공 검측, 플랜트 시설물, 교량, 터널 구조물 검측 등 건설 전반에 활용하고 있다. 스캔 방식 중 고정식 LiDAR는 이동식 LiDAR에 비해 정확도와 밀도가 높으나 정합 시간과 데이터 처리에 오랜 시간이 걸린다. 하지만, 인테리어, 건축물 관리와 같이 상대적으로 높은 정확도가 필요하지 않은 분야에서 사용자가 편리하게 이동하며 스캔할 수 있는 방법이 생산적이고 효율적이다. 이 연구는 자유롭게 이동하면서 실시간 점군 정합을 지원하는 SLAM(Simultaneous Localization and Mapping)기반 스캔백팩 시스템 개발 시 고려사항을 도출한다. 본 연구를 통해 모바일 스캔 기술을 이용한 스캔 생산성 개선을 위해, SLAM기반 스캔백팩(Scan Backpack) 장치 개발을 위한 프레임웍, 시스템 및 컴포넌트 구조를 제안하고, 프로토타입을 통해 개발 시 고려사항을 도출한다. 프로토타입 개발은 SLAM 및 스캔백팩 2단계로 수행해, 고려사항을 도출하고, 수행 결과를 분석하였다.

무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용 (Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter)

  • 황아롬;성우제;전봉환;이판묵
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.

이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘 (Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm)

  • 윤범진;유승열
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.377-383
    • /
    • 2021
  • 최근 4차 산업혁명에 따라 공장, 물류창고, 서비스영역에서 유연한 물류이송을 위한 자율 이동형 모바일 로봇의 사용이 증가하고 있다. 대규모 공장에서는 Simultaneous Localization and Mapping(SLAM)을 수행하기 위하여 많은 수작업이 필요하기 때문에 개선된 모바일 로봇 자율 주행에 대한 필요성이 대두되고 있다. 이에 따라 본 논문에서는 고정 및 이동 장애물을 피해 최적의 경로로 주행하는 Mapless Navigation에 대한 알고리즘을 제안하고자 한다. Mapless Navigation을 위하여 Deep Q Network(DQN)을 통해 고정 및 이동 장애물을 회피하도록 학습하였고 두 종류의 장애물 회피에 대하여 각각 정확도 90%, 93%를 얻었다. 또한 DQN은 많은 학습 시간을 필요로 하는데 이를 단축하기 위한 목표의 크기 변화 알고리즘을 제안하고 이를 시뮬레이션을 통하여 단축된 학습시간과 장애물 회피 성능을 확인하였다.