• Title/Summary/Keyword: simulink

Search Result 1,412, Processing Time 0.02 seconds

A Feasibility Study on the Development of Multifunctional Radar Software using a Model-Based Development Platform (모델기반 통합 개발 플랫폼을 이용한 다기능 레이다 소프트웨어 개발의 타당성 연구)

  • Seung Ryeon Kim ;Duk Geun Yoon ;Sun Jin Oh ;Eui Hyuk Lee;Sa Won Min ;Hyun Su Oh ;Eun Hee Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.23-31
    • /
    • 2023
  • Software development involves a series of stages, including requirements analysis, design, implementation, unit testing, and integration testing, similar to those used in the system engineering process. This study utilized MathWorks' model-based design platform to develop multi-function radar software and evaluated its feasibility and efficiency. Because the development of conventional radar software is performed by a unit algorithm rather than in an integrated form, it requires additional efforts to manage the integrated software, such as requirement analysis and integrated testing. The mode-based platform applied in this paper provides an integrated development environment for requirements analysis and allocation, algorithm development through simulation, automatic code generation for deployment, and integrated requirements testing, and result management. With the platform, we developed multi-level models of the multi-function radar software, verified them using test harnesses, managed requirements, and transformed them into hardware deployable language using the auto code generation tool. We expect this Model-based integrated development to reduce errors from miscommunication or other human factors and save on the development schedule and cost.

Parking Path Planning For Autonomous Vehicle Based on Deep Learning Model (자율주행차량의 주차를 위한 딥러닝 기반 주차경로계획 수립연구)

  • Ji hwan Kim;Joo young Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.4
    • /
    • pp.110-126
    • /
    • 2024
  • Several studies have focused on developing the safest and most efficient path from the current location to the available parking area for vehicles entering a parking lot. In the present study, the parking lot structure and parking environment such as the lane width, width, and length of the parking space, were vaired by referring to the actual parking lot with vertical and horizontal parking. An automatic parking path planning model was proposed by collecting path data by various setting angles and environments such as a starting point and an arrival point, by putting the collected data into a deep learning model. The existing algorithm(Hybrid A-star, Reeds-Shepp Curve) and the deep learning model generate similar paths without colliding with obstacles. The distance and the consumption time were reduced by 0.59% and 0.61%, respectively, resulting in more efficient paths. The switching point could be decreased from 1.3 to 1.2 to reduce driver fatigue by maximizing straight and backward movement. Finally, the path generation time is reduced by 42.76%, enabling efficient and rapid path generation, which can be used to create a path plan for autonomous parking during autonomous driving in the future, and it is expected to be used to create a path for parking robots that move according to vehicle construction.