• Title/Summary/Keyword: simulation-based method

Search Result 9,916, Processing Time 0.039 seconds

Scheduling Methods for a Hybrid Flowshopwith Dynamic Order Arrival (주문 생산 방식을 따르는 혼합 흐름 공정에서의일정계획에 관한 연구)

  • Lee, Geun-Cheol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.4
    • /
    • pp.373-381
    • /
    • 2006
  • This paper considers a scheduling problem for a hybrid flowshop with dynamic order arrival. A hybrid flowshop is an extended form of a flowshop, which has serial stages like a flowshop but there can be more than one machine at each stage. In this paper, we propose a new method for the problem of scheduling with the objective of minimizing mean tardiness of orders which arrive at the shop dynamically. The proposed method is based on the list scheduling approach, however we use a more sophisticated method to prioritize lots unlike dispatching rule-based methods. To evaluate the performance of the proposed method, a simulation model of a hybrid flowshop-type production system is constructed. We implement well-known dispatching rules and the proposed methods in the simulation model. From a series of simulation tests, we show that the proposed methods perform better than other methods.

Logical Modeling of Base System Model for Tank Engagement Simulation (전차 교전 시뮬레이션을 위한 기본체계모델의 논리 모델링 방법)

  • Lee, Sunju
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • Tank, which is a representative ground weapon system, is one of the most important weapon systems in each country. For the cost-effective acquisition of a tank based on scientific analysis, the operational concept and effectiveness should be studied based on engagement simulation technology. Besides physical capabilities including maneuver and communication, logical models including decision-making of a tank commander should be developed systematically. This paper describes a method to model a tank for engagement simulation based on Base System Model(BSM), which is the standard architecture of the weapon system model in AddSIM, an integrated engagement simulation software. In particular, a method is proposed to develop logical models by hierarchical and modular approach based on human decision-making model. The proposed method applies a mathematical formalism called DEVS(Discrete EVent system Specification) formalism. It is expected that the proposed method is widely used to study the operational concept and analyze the effectiveness of tanks in the Korean military in the future.

Simulation of multivariate non-Gaussian wind pressure on spherical latticed structures

  • Aung, Nyi Nyi;Ye, Jihong;Masters, F.J.
    • Wind and Structures
    • /
    • v.15 no.3
    • /
    • pp.223-245
    • /
    • 2012
  • Multivariate simulation is necessary for cases where non-Gaussian processes at spatially distributed locations are desired. A simulation algorithm to generate non-Gaussian wind pressure fields is proposed. Gaussian sample fields are generated based on the spectral representation method using wavelet transforms method and then mapped into non-Gaussian sample fields with the aid of a CDF mapping transformation technique. To illustrate the procedure, this approach is applied to experimental results obtained from wind tunnel tests on the domes. A multivariate Gaussian simulation technique is developed and then extended to multivariate non-Gaussian simulation using the CDF mapping technique. It is proposed to develop a new wavelet-based CDF mapping technique for simulation of multivariate non-Gaussian wind pressure process. The efficiency of the proposed methodology for the non-Gaussian nature of pressure fluctuations on separated flow regions of different rise-span ratios of domes is also discussed.

Hierarchical Modeling Methodology for Contraint Simulations (제약조건이 있는 시뮬레이션을 위한 계층적 모델링 방법론)

  • 이강선
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.41-50
    • /
    • 2000
  • We have many simulation constraints to meet as a modeled system becomes large and complex. Real-time simulations are the examples in that they are constrained by certain non-function constraints (e.g., timing constraints). In this paper, an enhanced hierarchical modeling methodology is proposed to efficiently deal with constraint-simulations. The proposed modeling method enhances hierarchical modeling methods to provide multi-resolution model. A simulation model is composed by determining the optimal level of abstraction that is guaranteed to meet the given simulation constraints. Four modeling activities are defined in the proposed method: 1) Perform the logical architectural design activity to produce a multi-resolution model, 2) Organize abstraction information of the multi-resolution model with AT (Abstraction Tree) structure, 3) Formulate the given constraints based on U (Integer Programming) approach and embrace the constraints to AT, and 4) Compose a model based on the determined level of abstraction with which the multi-resolution model can satisfy all given simulation constraints. By systematically handling simulation constraints while minimizing the modeler's interventions, we provide an efficient modeling environment for constraint-simulations.

  • PDF

A Fault Simulation Method Based on Primary Output (근본 출력에 근거한 고장 모의실험)

  • 이상설;박규호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.6
    • /
    • pp.63-70
    • /
    • 1994
  • In this paper, we propose a fault simulation method based on primary output in combinational circuit. In the deterministic test pattern generation, each test pattern is genterated incrementally. The test pattern is applied to the primary inputs of circuit under test to simulate faults. We detect the faults with respect to each primary output. The fault detection with resptect to each primary output is reflected by the corresponding bit in the detection words, and efficient fault detection for the reconvergent fan-out stem is achieved with dynamic fault propagation. As an experimental result of the fault simulation with our method for the several bench mark circuits, we illustrated the good performance showing that the number of gates to be activated is much reduced as compared with other method which is not based on primary output.

  • PDF

A Framework Development for BIM-based Object-Oriented Physical Modeling for Building Thermal Simulation (객체지향 물리적 모델링 기법을 활용한 BIM기반 통합 건물에너지 성능분석 모델 구축 및 활용을 위한 프레임워크 개발 - 건물 열부하 시뮬레이션 중심으로 -)

  • Jeong, WoonSeong
    • KIEAE Journal
    • /
    • v.15 no.5
    • /
    • pp.95-105
    • /
    • 2015
  • Purpose: This paper presents a framework development for BIM (Building Information Modeling)-based OOPM (Object-Oriented Physical Modeling) for Building Thermal Simulation. The framework facilitates decision-making in the design process by integrating two object-oriented modeling approaches (BIM and OOPM) and efficiently providing object-based thermal simulation results into the BIM environment. Method: The framework consists of a system interface between BIM and OOPM-based building energy modeling (BEM) and the visualization of simulation results for building designers. The interface enables a BIM models to be translated into OOPM-based BEM automatically and the thermal simulation from the created BEM model immediately. The visualization module enables the simulation results to be presented in BIM for building designers to comprehend the relationships between design decisions and the building performances. For the framework implementation, we utilized the Modelica Buildings Library developed by the Lawrence Berkeley National Laboratory as a thermal simulation solver. We also conducted an experiment to validate the framework simulation results and demonstrate our framework. Result: This paper demonstrates a new methodology to integrate BIM and OOPM-based BEM for building thermal simulation, which enables an automatic translation BIM into OOPM-based BEM with high efficiency and accuracy.

Analysis and Evaluation for Constraint Enforcement System (제한 시스템의 분석 및 평가)

  • Hong, Min;Park, Doo-Soon;Choi, Yoo-Joo
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • Stable and effective constraint enforcement system is one of the crucial components for physically-based dynamic simulations. This paper presents analysis and evaluation for traditional constraint enforcement systems(Lagrange Multiplier method, Baumgarte stabilization method, Post-stabilization method, Implicit constraint enforcement method, Fast projection method) to provide a guideline to users who need to integrate a suitable constraint enforcement system into their dynamic simulations. The mathematical formulations for traditional constraint enforcement systems are presented in this paper. This paper describes a summary of evaluation which consists of constraint error comparison, computational cost, and dynamic behavior analysis to verify the efficiency of each traditional constraint enforcement system.

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.

Adaptive and optimized agent placement scheme for parallel agent-based simulation

  • Jin, Ki-Sung;Lee, Sang-Min;Kim, Young-Chul
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.313-326
    • /
    • 2022
  • This study presents a noble scheme for distributed and parallel simulations with optimized agent placement for simulation instances. The traditional parallel simulation has some limitations in that it does not provide sufficient performance even though using multiple resources. The main reason for this discrepancy is that supporting parallelism inevitably requires additional costs in addition to the base simulation cost. We present a comprehensive study of parallel simulation architectures, execution flows, and characteristics. Then, we identify critical challenges for optimizing large simulations for parallel instances. Based on our cost-benefit analysis, we propose a novel approach to overcome the performance constraints of agent-based parallel simulations. We also propose a solution for eliminating the synchronizing cost among local instances. Our method ensures balanced performance through optimal deployment of agents to local instances and an adaptive agent placement scheme according to the simulation load. Additionally, our empirical evaluation reveals that the proposed model achieves better performance than conventional methods under several conditions.