• Title/Summary/Keyword: simulation-based method

Search Result 9,865, Processing Time 0.039 seconds

A Study on Proto-type Development of BIM based Architectural Construction Simulation System (BIM기반 건축시공 시뮬레이션 시스템 프로토 타입 개발에 관한 연구)

  • Park, Jae-Hyun;Yun, Seok-Heon;Paek, Joon-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.442-445
    • /
    • 2008
  • The purpose of this study is making Proto-type development of BIM based Architectural Construction Simulation System. This study suggest a new schedule access method for overcoming limitation of current Simulation Program focused on visualization. The method made from analysis of current Simulation Program. This program is based on Visual Basic .Net language.

  • PDF

Distributed Web-based Simulation with Server Application Approach using Callback Mechanism

  • Shim, Won-Bo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.04a
    • /
    • pp.152-157
    • /
    • 1999
  • In this paper, we introduce the concept of web-based simulation and some reviews on the distributed simulation on the World Wide Web (WWW) and classify the features of current web-based simulation under the distributed way. And then we suggest the structure of distributed web-based simulation which can achieve parallel simulation and reduce simulation run time and show how the callback mechanism works to enable the distributions of jobs to clients with push service in Remote Method Invocation (RMI). Finally we present a prototype of distributed web-based simulation.

  • PDF

Automated Generation of a Construction Schedule Based on the Work Method Template for 4D Simulation (4D 시뮬레이션을 위한 공법 템플릿 기반의 건설공정 자동 생성)

  • Song, Sung-Yol;Yang, Jeong-Sam;Myung, Tae-Sik
    • IE interfaces
    • /
    • v.25 no.2
    • /
    • pp.216-228
    • /
    • 2012
  • BIM-based 4D simulation makes people easily understand complex construction process using 3D graphics model and helps them review and identify the construction schedule in each phase of the construction process. Moreover, 4D simulation can be used as reference data to determine the validity of the process in the design phase and will be utilized as a measure for checking the construction process. Therefore 4D simulation of construction improves efficiency of project management. However, current commercial applications available for 4D simulation do not provide sufficient functions for connection of 3D models and process information. In this paper, we propose an automated generation method through the definition of the process based on a work method template and developed the template based schedule generation system (TSGS).

Development of a Dynamic Simulation Program for Pantograph-Catenary System based on a Mode Superposition Method (모드중첩법을 기초로 한 집전성능해석 프로그램 개발)

  • 조용현;이기원;현승호;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.606-617
    • /
    • 2000
  • A dynamic simulation program for pantograph-catenary system is developed based on a mode superposition method to predict current collection performance. Formulations for the dynamic simulation are presented in this paper. The number of modes which should be considered for a KTX catenary system is reviewed through frequency response analyses. The responses for GPU pantograph - KTX catenary system are simulated with various train speeds. The our simulation results are in reasonably good agreements with RTRI simulation program, SNCF simulation program, and BR simulation program.

  • PDF

A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Li, Meng-kun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1436-1443
    • /
    • 2019
  • A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction and point-kernel method is proposed in this paper. The complex three-dimensional (3D) geometries are imported as a 3DS format file from 3dsMax software with material and radiometric attributes. Based on 3D stylized model reconstruction of solid mesh, the 3D-geometrical solids are automatically converted into stylized models. In point-kernel calculation, the stylized source models are divided into point kernels and the mean free paths (mfp) are calculated by the intersections between shield stylized models and tracing ray. Compared with MCNP, the proposed method can implement complex 3D geometries visually, and the dose rate calculation is accurate and fast.

Mechanical parameters detection in stepped shafts using the FEM based IET

  • Song, Wenlei;Xiang, Jiawei;Zhong, Yongteng
    • Smart Structures and Systems
    • /
    • v.20 no.4
    • /
    • pp.473-481
    • /
    • 2017
  • This study suggests a simple, convenient and non-destructive method for investigation of the Young's modulus detection in stepped shafts which only utilizes the first-order resonant frequency in flexural mode and dimensions of structures. The method is based on the impulse excitation technique (IET) to pick up the fundamental resonant frequencies. The standard Young's modulus detection formulas for rectangular and circular cross-sections are well investigated in literatures. However, the Young's modulus of stepped shafts can not be directly detected using the formula for a beam with rectangular or circular cross-section. A response surface method (RSM) is introduced to design numerical simulation experiments to build up experimental formula to detect Young's modulus of stepped shafts. The numerical simulation performed by finite element method (FEM) to obtain enough simulation data for RSM analysis. After analysis and calculation, the relationship of flexural resonant frequencies, dimensions of stepped shafts and Young's modulus is obtained. Numerical simulations and experimental investigations show that the IET method can be used to investigate Young's modulus in stepped shafts, and the FEM simulation and RSM based IET formula proposed in this paper is applicable to calculate the Young's modulus in stepped shaft. The method can be further developed to detect mechanical parameters of more complicated structures using the combination of FEM simulation and RSM.

Prediction and Evaluation of the Wind Environment in Site Planning of Apartment Housing by CFD (아파트 주거의 배치계획에 있어 CFD에 의한 풍환경의 예측과 평가)

  • Sohn, Saehyung
    • KIEAE Journal
    • /
    • v.10 no.2
    • /
    • pp.63-69
    • /
    • 2010
  • Diverse problems in wind environment has occurred through rapid urbanization and growth of high-rise building numbers, This study aims to propose the CFD (Computational Fluid Dynamics) simulation method and evaluation standard of wind environment in site planning of high rise apartment housing. The CFD simulation method proposed in this study is not existing detail simulation, but it is the method that a designer can correct and develop the design through immediate evaluation of design options in concept design phase. Therefore, the proposed CFD simulation method of wind environment in this study uses the BIM based CFD tool in which the 3D model in concept design phase can be used as for the CFD simulation. In this paper, the study examines existing evaluation standards of comfortableness level in wind environment for pedestrian near buildings, and selects new evaluation method which is possible to apply to the proposed CFD simulation method. In addition, it is to examine calculation time-spending and appropriate mesh division method for finding CFD result which is useful to find the best design options in aspect of wind environment in concept design phase. Furthermore, it proposes the wind environment evaluation method through BIM based CFD simulation.

The Optimal Design Method of the Train Repair Facility based on the Simulation (시뮬레이션을 이용한 철도 정비 시설의 최적 설계 방법)

  • Um, In-Sup;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.306-312
    • /
    • 2007
  • This paper presents the optimal design method of the train repair facility based on the simulation analysis. The train is divided into the power car, motorized car and passenger car for the simulation process analysis and train repair facility is composed of each subsystems such as a blast, dry and wash workshop. In simulation analysis, we consider the critical (dependent) factors and design (independent) factors for the optimal design. Therefore, a simulation optimization uses Evolution Strategy (ES) in order to find the optimal design factors. Experimental results indicate that simulation design factors are sufficient to satisfy the conditions of dependent variables. The proposed analysis method demonstrates that simulation design factors determined by the simulation optimization are appropriate for real design factors in a real situation and the accuracy and confidence for the simulation results are increased.

A Study Techniques of OMS/MP Generation Using War Game Simulation (모의분석을 통한 OMS/MP 산출기법에 관한 연구)

  • Kim, Hae-Yean;Byun, Jae-Jung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.802-811
    • /
    • 2012
  • This study proposes an OMS/MP preparation methodology using a simulation method instead of a survey method. We applied our methodology to the next generation detection radar, providing reasonable peace- and war-time OMS/MP values. Based on these results, we propose the process to calculate RAM objective values. The previous survey method required to supplement its method since the method used data from a similar weapon system. In addition, the previous method didn't provide enough reliability for the future weapon system. Instead of using the previous survey method, we propose to use war game simulation, which provides a better OMS/MP values. Based on these results, we propose the logical consecutive process that prepares combat and simulation scenarios, peace- and war-time OMS/MP values and RAM objective values.

Constructivistic Learning Method with Simulation to Increase Classroom Engagement

  • Yuniawan, Dani;Ito, Teruaki
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.54-59
    • /
    • 2012
  • It is reported that the constructivistic learning method (CLM) enhances the understanding of the students in the learning process, especially in engineering classes. In CLM-based classes, the students can take the initiative in the learning process, which is called the student-centered model of the learning process. This is different from the traditional learning method based on the teacher-centered model, where a teacher plays the central role in the learning process of students. The authors have applied the method of CLM to one of the Engineering classes, namely production planning and inventory control (PPIC) class for undergraduate students. The PPIC class provides multimedia-based study materials and factory visits as well as regular lecture sections to cover the whole subject of inventory control theory and practice. In the review sessions, students are divided into several groups, and question-and-answer discussions were actively carried out among these groups under the support of the teacher as a facilitator. It was observed that the student engagement in the class was very active compared to the conventional lecture-based classes. As for further support of students understanding on the subject, simulation-based materials are also under study for the class. This paper presents the review of case study of CLM-based PPIC class and discusses the feasibility of simulation-based study materials for further improvement of the class.