• Title/Summary/Keyword: simulation synergy strategy

Search Result 7, Processing Time 0.023 seconds

Simulation combined transfer learning model for missing data recovery of nonstationary wind speed

  • Qiushuang Lin;Xuming Bao;Ying Lei;Chunxiang Li
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.383-397
    • /
    • 2023
  • In the Structural Health Monitoring (SHM) system of civil engineering, data missing inevitably occurs during the data acquisition and transmission process, which brings great difficulties to data analysis and poses challenges to structural health monitoring. In this paper, Convolution Neural Network (CNN) is used to recover the nonstationary wind speed data missing randomly at sampling points. Given the technical constraints and financial implications, field monitoring data samples are often insufficient to train a deep learning model for the task at hand. Thus, simulation combined transfer learning strategy is proposed to address issues of overfitting and instability of the deep learning model caused by the paucity of training samples. According to a portion of target data samples, a substantial quantity of simulated data consistent with the characteristics of target data can be obtained by nonstationary wind-field simulation and are subsequently deployed for training an auxiliary CNN model. Afterwards, parameters of the pretrained auxiliary model are transferred to the target model as initial parameters, greatly enhancing training efficiency for the target task. Simulation synergy strategy effectively promotes the accuracy and stability of the target model to a great extent. Finally, the structural dynamic response analysis verifies the efficiency of the simulation synergy strategy.

Research on Line Overload Emergency Control Strategy Based on the Source-Load Synergy Coefficient

  • Ma, Jing;Kang, Wenbo;Thorp, James S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1079-1088
    • /
    • 2018
  • A line overload emergency control strategy based on the source-load synergy coefficient is proposed in this paper. First, the definition of the source-load synergy coefficient is introduced. When line overload is detected, the source-load branch synergy coefficient and source-load distribution synergy coefficient are calculated according to the real-time operation mode of the system. Second, the generator tripping and load shedding control node set is determined according to the source-load branch synergy coefficient. And then, according to the line overload condition, the control quantity of each control node is determined using the Double Fitness Particle Swarm Optimization (DFPSO), with minimum system economic loss as the objective function. Thus load shedding for the overloaded line could be realized. On this basis, in order to guarantee continuous and reliable power supply, on the condition that no new line overload is caused, some of the untripped generators are selected according to the source-load distribution synergy coefficient to increase power output. Thus power supply could be restored to some of the shedded loads, and the economic loss caused by emergency control could be minimized. Simulation tests on the IEEE 10-machine 39-bus system verify the effectiveness and feasibility of the proposed strategy.

Power Distribution Strategy for Wireless Tram with Hybrid Energy Storage System (하이브리드 에너지 저장장치를 탑재한 무가선 트램의 전력분배전략)

  • Kang, Kyung-Jin;Oh, Yong-Kuk;Lee, Jee-Ho;Yeom, Min-Kyu;Kwak, Jae-Ho;Lee, Hyeong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1615-1621
    • /
    • 2014
  • A wireless tram which runs without catenary and instead uses batteries installed in the tram has been recently researched actively. This paper presents a new method maximizing absorption of regenerative energy of a wireless tram and extending life cycle of the energy storage device in the wireless tram by applying line-optimized charging and discharging scenario. Energy efficiency and life cycle of energy storage system (ESS) are highly dependent on the characteristic of operating conditions. For example, frequent charge and discharge with high power cause the problems that decrease the battery life cycles. Hybrid energy storage system (HESS) is combination of two ESSs which have complementary characteristics to each other. HESS can provide even better functionality and performance than the battery only ESS due to the synergy effect of two ESSs. This paper also provides a power distribution strategy and driving scenarios which increase the life cycle and energy efficiency of the HESS consisting of a battery and an ultra-capacitor. The developed strategy was tested and verified by a hardware-in-the-loop-simulation (HILS) system which emulates the a wireless tram.

Structural damage identification with output-only measurements using modified Jaya algorithm and Tikhonov regularization method

  • Guangcai Zhang;Chunfeng Wan;Liyu Xie;Songtao Xue
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.229-245
    • /
    • 2023
  • The absence of excitation measurements may pose a big challenge in the application of structural damage identification owing to the fact that substantial effort is needed to reconstruct or identify unknown input force. To address this issue, in this paper, an iterative strategy, a synergy of Tikhonov regularization method for force identification and modified Jaya algorithm (M-Jaya) for stiffness parameter identification, is developed for damage identification with partial output-only responses. On the one hand, the probabilistic clustering learning technique and nonlinear updating equation are introduced to improve the performance of standard Jaya algorithm. On the other hand, to deal with the difficulty of selection the appropriate regularization parameters in traditional Tikhonov regularization, an improved L-curve method based on B-spline interpolation function is presented. The applicability and effectiveness of the iterative strategy for simultaneous identification of structural damages and unknown input excitation is validated by numerical simulation on a 21-bar truss structure subjected to ambient excitation under noise free and contaminated measurements cases, as well as a series of experimental tests on a five-floor steel frame structure excited by sinusoidal force. The results from these numerical and experimental studies demonstrate that the proposed identification strategy can accurately and effectively identify damage locations and extents without the requirement of force measurements. The proposed M-Jaya algorithm provides more satisfactory performance than genetic algorithm, Gaussian bare-bones artificial bee colony and Jaya algorithm.

Marketing Communication and Synergy of Pentahelix Strategy on Satisfaction and Sustainable Tourism

  • CHAMIDAH, Nurul;GUNTORO, Budi;SULASTRI, Endang
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.3
    • /
    • pp.177-190
    • /
    • 2020
  • This study aims to present explicit findings from an internal perspective, namely the interaction patterns of marketing communication between pentahelix elements and testing the expectations of tourists towards tourism activities through a simulation model between variables. This study is divided into two methods of analysis, namely qualitative explorative, where the study aims to invest in communication patterns and patterns of interaction between pentahelix stakeholders in Sitiwinangun Tourism Village, West Java, Indonesia with involve 17 informants who came from pentahelix elements (Government, academics, community, business and media). Second, quantitative method to measure the extent of effectiveness rather than collaboration activities and the role of marketing communication to tourist satisfaction is done by an analytical approach involving 30 tourists through customer satisfaction surveys. The results of this study illustrate that the involvement of each pentahelix element has not been maximized. The pattern of interaction and communication between elements also shows the gap between interests, expectations, and reality. This study provides a real picture that to realize a tourism program that is profitable, holistic, and sustainable requires collaboration that is wrapped with transparent and interactive communication patterns. The marketing communication concept approach combined with collaboration theory between stakeholders can be useful for sustainable tourism.

The Effect of Uncertain Information on Supply Chain Performance in a Beer Distribution Game-A Case of Meterological Forecast Information (불확실성 정보가 맥주배송게임 기반의 공급사슬 수행도에 미치는 영향 평가 : 기상정보 사례를 중심으로)

  • Lee, Ki-Kwang;Kim, In-Gyum;Ko, Kwang-Kun
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.4
    • /
    • pp.139-158
    • /
    • 2007
  • Information sharing is key to effective supply chain management. In reality, however, it is impossible to get perfect information. Accordingly, only uncertain information can be accessed in business environment, and thus it is important to deal with the uncertainties of information in managing supply chains. This study adopts meteorological forecast as a typical uncertain information. The meteorological events may affect the demands for various weather-sensitive goods, such as beer, ices, clothes, electricity etc. In this study, a beer distribution game is modified by introducing meterological forecast information provided in a probabilistic format. The behavior patterns of the modified beer supply chains are investigated. for two conditions using the weather forecast with or without an information sharing. A value score is introduced to generalize the well-known performance measures employed in the study of supply chains, i.e.. inventory, backlog, and deviation of orders. The simulation result showed that meterological forecast information used in an information sharing environment was more effective than without information sharing, which emphasizes the synergy of uncertain information added to the information sharing environment.

  • PDF

A Cross-Layer Transmission Architecture to Support Power Saving High-Speed Multimedia Services in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 전력 절약 고속 멀티미디어 서비스를 지원하기 위한 Cross-Layer 전송구조)

  • An, Beongku;Choi, Ginkyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.15-24
    • /
    • 2008
  • In this paper, we propose a Cross-Layer Transmission Architecture (CLTA) to support power saving high-speed multimedia services in mobile ad-hoc wireless sensor networks(MAWSN). The main goals of this paper are in showing and proposing how the routing routes are decided on route stability based on mobility of mobile nodes to increase the operational lifetime of routes as well as how the transmit power can be saved in mobile ad-hoc wireless sensor networks. To obtain these goals, we propose a cross-layer architecture strategy which combines network layer technology with physical layer technology to get synergy effects in the view of transmission power saving. We consider a realistic approach, in the points of view of the MAWSN, based on mobile sensor nodes as well as fixed sensor nodes in sensor fields while the conventional research for sensor networks focus on mainly fixed sensor nodes. The performance evaluation of the proposed CLTA is performed via simulation and analysis.

  • PDF