• Title/Summary/Keyword: simulation study

Search Result 27,037, Processing Time 0.056 seconds

Analyses of the Setup Errors using on Board Imager (OBI) (On Board Imager (OBI)를 이용한 Setup Error 분석에 대한 연구)

  • Kim, Jong-Deok;Lee, Haeng-O;You, Jae-Man;Ji, Dong-Hwa;Song, Ju-Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Purpose: The accuracy and advantages of OBI(On Board Imager) against the conventional method like film and EPID for the setup error correction were evaluated with the analysis of the accumulated data which were produced in the process of setup error correction using OBI. Materials and Methods: The results of setup error correction using OBI system were analyzed for the 130 patients who had been planned for 3 dimensional conformal radiation therapy during March 2006 and May 2006. Two kilo voltage images acquired in the orthogonal direction were fused and compared with reference setup images. The setup errors in the direction of vertical, lateral, longitudinal axis were recorded and calculated the distance from the isocenter. The corrected setup error were analyzed according to the lesion and the degree of shift variations. Results: There was no setup error in the 41.5% of total analyzed patients and setup errors between 1mm and 5mm were found in the 52.3%. 6.1% patients showed the more than 5mm shift and this error were verified as a difference of setup position and the movement of patient in a treatment room. Conclusion: The setup error analysis using OBI in this study verified that the conventional setup process in accordance with the laser and field light was not enough to get rid of the setup error. The KV images acquired using OBI provided good image quality for comparing with simulation images and much lower patients' exposure dose compared with conventional method of using EPID. These advantages of OBI system which were confirmed in this study proved the accuracy and priority of OBI system in the process of IGRT(Image Guided Radiation Therapy).

  • PDF

Landscape Assessment and Improvement of the View Area by Selecting the Landscape Control Point (조망점 선정을 통한 대상지의 경관가치 평가 및 개선방안)

  • Kim, Jin-Hyo;Lee, Hyun-Taek;Ra, Jung-Hwa;Cho, Hyun-Ju;SaGong, Jung-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.19-32
    • /
    • 2012
  • The purpose of this study is to quantitatively measure the view target and the view area through the selection of landscape control point by selecting Jimyeong-dong Dong-gu and Yeongyeong-dong Buk-gu Daegu, which are planned as the large scale housing complex development area, as the target places. It is very meaningful that from the simulation based on this measurement, the improvement methods are attempted to be suggested at the project level. The results of this study are as follows. First, the total number of viewing targets derived from the literature analysis for the selection of the viewing targets was 24, and finally derived main viewing targets were 4 places. Second, the total number of selection criteria of the derived landscape control point was 15, and these were re-categorized as prospect, accessibility and publicness according to the common property. The preliminary LCPs were selected by measuring the publicness and accessibility, and because of the said measurement, a total of 43 preliminary LCPs were selected. The final LCPs were selected by estimating the prospect of the selected preliminary LCPs, and as a result of estimation, a total of 29 final LCPs were selected. Finally, the total number of evaluation indicators derived from literature analysis was 26. Because of the valuation by the landscape control point, it was found that the 2 view areas were the I grade, 3 areas were II grade and 3 areas were the V grade, the lowest grade among 29 view areas. From the analysis on problems for the improvement methods, 4 improvement-indicators including the diversity of land mosaic were selected for the view area-1 without considering the development project drawing. In addition, for the view area-2 with considering the development project drawing, the landscape as the scenery forests was well formed, and the arrangement of architectures for the security of view corridor was right angle arrangement, and their floor number was 10.

Analysis of Suspended Solids Reduction by Vegetative Filter Strip for Cultivated Area Using Web GIS-Based VFSMOD (VFSMOD를 이용한 경작지의 고형물질 유출 저감효과)

  • Ahn, Jae Hwan;Yun, Sang Leen;Kim, Seog Ku;Park, Youn Shik;Lim, Kyoung Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.792-800
    • /
    • 2012
  • The study was performed to simulate the reduction efficiency of suspended solids (SS) for cultivated land located at riverine area at the Namhan River and the Bukhan River watershed sites (site A, B, C) under the rainfall conditions using HUFF & SCS UH-based VFS Design module of Web GIS-based VFSMOD System. The study indicates that the field 5% sloped, located at Bukhan River watershed (site A), requires at least 0.5 m width of Vegetative Filter Strip (VFS) to reduce 70% of SS while the field 10% sloped requires the at least 1.0~1.5 m width of VFS to reduce 70% SS, under the condition 106.2 mm of rainfall event and bell pepper or corn of crops. Against the conditions 95.1 mm of rainfall event and sweet potato or soy bean of crops, the field 5% sloped, located at Namhan River watershed (site B) requires at least 0.5 m width of VFS to reduce 70% of SS while the field 10% sloped requires at least 1.0 m width of VFS to reduce 50% SS. The crops sweet potato and soy bean are cultivated in the site C, located at Namhan River watershed, 1 m of VFS is capable of 64.0% and 62.0% of SS reduction against 102.6 mm and 151.2 mm rainfall conditions respectively, for the 5% sloped field. The result supports that VFS is one of most potential methods to reduce SS from cultivated area, which is environment-friendly hydrologic structure. The VFS design, however, needs to be simulated before its installation in the field, the simulation needs to consider not only various characteristics of the field but also different conditions affecting the VFS, using a model capable to consider a lot of factors.

A Study of the Radiotherapy Techniques for the Breast Including Internal Mammary Lymph Nodes (유방 보존술 후 내유림프절을 포함하는 방사선치료 기법에 관한 연구)

  • Jeong, Kyoung-Keun;Shim, Su-Jung;You, Sei-Hwan;Kim, Yong-Bae;Keum, Ki-Chang;Kim, Jong-Dae;Suh, Chang-Ok
    • Radiation Oncology Journal
    • /
    • v.27 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • Purpose: This study was designed to determine the optimum radiotherapy technique for internal mammary node (IMN) irradiation after breast-conserving surgery. Materials and Methods: We selected ten cases of early stage partial mastectomy for plan comparison. Five of the patients were treated to the right-side breast and the rest of the patients were treated to the left-side breast. For each case, four different treatment plans were made to irradiate the entire breast, IMNs and supraclavicular lymph nodes (SCLs). The four planning techniques include a standard tangential field (STF), wide tangential field (WTF), partially wide tangential field (PWT) and a photon-electron mixed field (PEM). We prescribed a dose of 50.4 Gy to the SCL field at a 3 cm depth and isocenter of the breast field. Results: The dose distribution showed clear characteristics depending on the technique used. All of the techniques covered the breast tissue well. IMN coverage was also good, except for the STF, which was not intended to cover IMNs. For the cases of the left-side breasts, the volume of the heart that received more than 30 Gy was larger (in order) for the WTF, PWT, PEM and STF. For radiation pneumonitis normal tissue complication probability (NTCP), the PWT showed the best results followed by the STF. Conclusion: Despite the variety of patient body shapes, the PWT technique showed the best results for coverage of IMNs and for reducing the lung and heart dose.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

A Way for Creating Human Bioclimatic Maps using Human Thermal Sensation (Comfort) and Applying the Maps to Urban and Landscape Planning and Design (인간 열환경 지수를 이용한 생기후지도 작성 및 도시·조경계획 및 디자인에의 적용방안)

  • Park, Soo-Kuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.21-33
    • /
    • 2013
  • The purpose of this study is to find applicabilities of human bioclimatic maps, using human thermal sensation(comfort) in summer, with microclimatic in situ data and computer simulation results at the study site of downtown Daegu. This includes the central business district(CBD) area and two urban parks, the Debt Redemption Movement Memorial Park and the 2.28 Park, for urban and landscape planning and design. Climatic data and urban setting information for the analysis of human thermal sensation were obtained from in situ measurement and the geographic information system data. As a result, the CBD had higher air temperature than the parks when the wind speed was low. Relative humidities were opposite to the air temperature. Especially, same directional streets with local wind direction had lower air temperature than streets perpendicular to the wind direction. The most important climatic variable of human thermal sensation in summer was direct beam solar radiation. Also, creating shadow areas would be the most relevant method for modifying hot thermal environments in urban areas. The most effective method of creating shadow patterns was making a tree shadow over a pergola, and the second best one was making a tree shadow on the front of north directional building walls. Moreover, how to plant trees for creating shadow patterns was important as well as what kind of trees should be planted. The results of human thermal sensation were warm to very hot at sunny areas and neutral to warm at shaded ones. At the sunny areas, wide, squared shape areas had a little bit higher thermal sensation than those of narrow streets. The albedo change of building walls 0.15 and ground surface 0.1 could change 1/6 of a sensation level at the shaded areas and 1/3 at the sunny ones. These microclimatic approaches will be useful to find appropriate methods for modifying thermal environments in urban areas.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (2) Development of CFD Model to Study the Effect of Tomato Plants on Internal Climate of Greenhouse - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (2)온실내 대기환경에 미치는 작물의 영향 분석을 위한 CFD 모델개발 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Hong Se-Woon;Sung Si-Heung
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.296-305
    • /
    • 2006
  • The heterogeneity of crop transpiration is important to clearly understand the microclimate mechanisms and to efficiently handle the water resource in greenhouses. A computational fluid dynamic program (Fluent CFD version 6.2) was developed to study the internal climate and crop transpiration distributions of greenhouses. Additionally, the global solar radiation model and a crop heat exchange model were programmed together. Those models programmed using $C^{++}$ software were connected to the CFD main module using the user define function (UDF) technology. For the developed CFD validity, a field experiment was conducted at a $17{\times}6 m^2$ plastic-covered mechanically ventilated single-span greenhouse located at Pusan in Korea. The CFD internal distributions of air temperature, relative humidity, and air velocity at 1m height were validated against the experimental results. The CFD computed results were in close agreement with the measured distributions of the air temperature, relative humidity, and air velocity along the greenhouse. The averaged errors of their CFD computed results were 2.2%,2.1%, and 7.7%, respectively.

Study of Scatter Influence of kV-Conebeam CT Based Calculation for Pelvic Radiotherapy (골반 방사선 치료에서 산란이 kV-Conebeam CT 영상 기반의 선량계산에 미치는 영향에 대한 연구)

  • Yoon, KyoungJun;Kwak, Jungwon;Cho, Byungchul;Kim, YoungSeok;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • The accuracy and uniformity of CT numbers are the main causes of radiation dose calculation error. Especially, for the dose calculation based on kV-Cone Beam Computed Tomography (CBCT) image, the scatter affecting the CT number is known to be quite different by the object sizes, densities, exposure conditions, and so on. In this study, the scatter impact on the CBCT based dose calculation was evaluated to provide the optimal condition minimizing the error. The CBCT images was acquired under three scatter conditions ("Under-scatter", "Over-scatter", and "Full-scatter") by adjusting amount of scatter materials around a electron density phantom (CIRS062, Tissue Simulation Technology, Norfolk, VA, USA). The CT number uniformities of CBCT images for water-equivalent materials of the phantom were assessed, and the location dependency, either "inner" or "outer" parts of the phantom, was also evaluated. The electron density correction curves were derived from CBCT images of the electron density phantom in each scatter condition. The electron density correction curves were applied to calculate the CBCT based doses, which were compared with the dose based on Fan Beam Computed Tomography (FBCT). Also, 5 prostate IMRT cases were enrolled to assess the accuracy of dose based on CBCT images using gamma index analysis and relative dose differences. As the CT number histogram of phantom CBCT images for water equivalent materials was fitted with a gaussian function, the FHWM (146 HU) for "Full-scatter" condition was the smallest among the FHWM for the three conditions (685 HU for "under scatter" and 264 HU for "over scatter"). Also, the variance of CT numbers was the smallest for the same ingredients located in the center and periphery of the phantom in the "Full-scatter" condition. The dose distributions calculated with FBCT and CBCT images compared in a gamma index evaluation of 1%/3 mm criteria and in the dose difference. With the electron density correction acquired in the same scatter condition, the CBCT based dose calculations tended to be the most accurate. In 5 prostate cases in which the mean equivalent diameter was 27.2 cm, the averaged gamma pass rate was 98% and the dose difference confirmed to be less than 2% (average 0.2%, ranged from -1.3% to 1.6%) with the electron density correction of the "Full-scatter" condition. The accuracy of CBCT based dose calculation could be confirmed that closely related to the CT number uniformity and to the similarity of the scatter conditions for the electron density correction curve and CBCT image. In pelvic cases, the most accurate dose calculation was achievable in the application of the electron density curves of the "Full-scatter" condition.

Availability and Reproducibility Evaluation of High-dose-rate Intraluminal Brachytherapy for Unresectable Recurrent Cholangiocarcinoma (재발한 간담도암 환자에서 시행 한 high-dose-rate intraluminal brachytherapy의 유용성 및 재현성 평가)

  • Park, Ju-Kyeong;Lee, Seung-Hun;Cha, Seok-Yong;Kim, Yang-Su;Lee, Sun-Young
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.151-157
    • /
    • 2012
  • General treatment for cholangiocarcinoma is complete surgical resection. However recurrence is common in those patients. In most of cases the purpose of the treatment for patients with recurrent is palliative. Therefore we adopt intraluminal catheter to treat a recurrent patient with high-dose-rate intraluminal brachytherapy. This study aims to evaluate the treatment procedure and set-up reproducibility of intraluminal brachytherapy in the recurrent patient. Study patient was diagnosed at rcT1N0M0 and undergone intraluminal brachytherapy after Arrow Sheath insertion. 3 Gy was delivered in every fraction with a total dose of 30 Gy. We planned dose normalization at distal, proximal and central axis point of narrowed bile duct far from 1 cm. To evaluate set-up reproducibility, we measured distance between distal, proximal treatment target volume point and anterior surface of the thoracic vertebral body respectively for five times before every treatment with dummy seed insertion. Mean distance between distal, proximal treatment target volume point and anterior surface of 10th and 11th thoracic vertebral bodies is 0.5 cm, 6.1 cm and standard deviation is 0.06, 0.08 respectively. In addition, set-up reproducibility was maintained significantly. The patient has been alive with no evidence of disease recurrence for more than a year and has not yet reported severe complications. In conclusion, high-dose-rate intraluminal brachytherapy for unresectable recurrence of cholangiocarcinoma maintains high set-up reproducibility without severe side effects.

A Study on the Application Direction of Finite Element Analysis in the Field of Packaging through Research Trend Analysis in Korea (국내 연구 동향 분석을 통한 포장분야에서 유한요소해석의 적용 방향에 관한 고찰)

  • Lee, Hakrae;Jeon, Kyubae;Ko, Euisuk;Shim, Woncheol;Kang, Wookgun;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.23 no.3
    • /
    • pp.191-200
    • /
    • 2017
  • Proper packaging design can meet both the environmental and economic aspects of packaging materials by reducing the use of packaging materials, waste generation, material costs, and logistics costs. Finite element analysis(FEM) is used as a useful tool in various fields such as structural analysis, heat transfer, fluid motion, and electromagnetic field, but its application in the field of packaging is still insufficient. Therefore, the application of FEM to the field of packaging can save the cost and time in the future research because it is possible to design the package by computer simulation, and it is possible to reduce the packaging waste and logistics cost through proper packaging design. Therefore, this study investigated the FEM papers published in Korea for the purpose of helping research design using FEM program in the field of packaging in the future. In this paper, we analyzed the 29 papers that were directly related to the analysis of FEM papers published in domestic journals from 1991 to 2017. As a result, we analyzed the research topic, FEM program, and analysis method using each paper, and presented the direction that can be applied in future packaging field. When the FEM is applied to the packaging field, it is possible to change the structure and reduce the thickness through the stress and vibration analysis applied to the packaging material, thereby reducing the cost by improving the mechanical strength and reducing the amount of the packaging material. Therefore, in the field of packaging research in the future, if the FEM is performed together, economical and reasonable packaging design will be possible.