• 제목/요약/키워드: simulation solver

검색결과 402건 처리시간 0.031초

기저부 유동 및 난류가 다단 로켓의 단 분리 운동에 미치는 영향 (EFFECT OF BASE FLOW AND TURBULENCE ON THE SEPARATION MOTION OF STRAP-ON ROCKET BOOSTERS)

  • 고순흠;김재관;한상호;김진호;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.83-86
    • /
    • 2007
  • Turbulent flow analysis is conducted around the multi-stage launch vehicle including base region and detachment motion of strap-on boosters due to resultant aerodynamic forces and gravity is simulated. Aerodynamic solution procedure is coupled with rigid body dynamics for the prediction of separation behavior. An overset mesh technique is adopted to achieve maximum efficiency in simulating relative motion of bodies and various turbulence models are implemented on the flow solver to predict the aerodynamic forces accurately. At first, some preliminary studies are conducted to show the importance of base flow for the exact prediction of detachment motion and to find the most suitable turbulence model for the simulation of launch vehicle configurations. And then, developed solver is applied to the simulation of KSR-III, a three-stage sounding rocket researched in Korea. From the analyses, after-body flow field strongly affects the separation motions of strap-on boosters. Negative pitching moment at initial stage is gradually recovered and a strap-on finally results in a safe separation, while fore-body analysis shows collision phenomena between core rocket and booster. And a slight variation of motion is observed from the comparison between inviscid and turbulent analyses. Change of separation trajectory based on viscous effects is just a few percent and therefore, inviscid analysis is sufficient for the simulation of separation motion if the study is focused only on the movement of strap-ons.

  • PDF

객체지향 물리적 모델링 기법을 활용한 BIM기반 통합 건물에너지 성능분석 모델 구축 및 활용을 위한 프레임워크 개발 - 건물 열부하 시뮬레이션 중심으로 - (A Framework Development for BIM-based Object-Oriented Physical Modeling for Building Thermal Simulation)

  • 정운성
    • KIEAE Journal
    • /
    • 제15권5호
    • /
    • pp.95-105
    • /
    • 2015
  • Purpose: This paper presents a framework development for BIM (Building Information Modeling)-based OOPM (Object-Oriented Physical Modeling) for Building Thermal Simulation. The framework facilitates decision-making in the design process by integrating two object-oriented modeling approaches (BIM and OOPM) and efficiently providing object-based thermal simulation results into the BIM environment. Method: The framework consists of a system interface between BIM and OOPM-based building energy modeling (BEM) and the visualization of simulation results for building designers. The interface enables a BIM models to be translated into OOPM-based BEM automatically and the thermal simulation from the created BEM model immediately. The visualization module enables the simulation results to be presented in BIM for building designers to comprehend the relationships between design decisions and the building performances. For the framework implementation, we utilized the Modelica Buildings Library developed by the Lawrence Berkeley National Laboratory as a thermal simulation solver. We also conducted an experiment to validate the framework simulation results and demonstrate our framework. Result: This paper demonstrates a new methodology to integrate BIM and OOPM-based BEM for building thermal simulation, which enables an automatic translation BIM into OOPM-based BEM with high efficiency and accuracy.

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF THE DESIGN METHODOLOGY FOR HIGH PERFORMANCE AND EFFICIENT CAVITATOR)

  • 이병우;박수일;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.177-184
    • /
    • 2009
  • Cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flows. The governing equation is the Navier-Stokes equation based on the homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. For the code validation, the results from the present solver have been compared with experiments and other numerical results. A fairly good agreement with the experimental data and other numerical results have been obtained. After the code validation, the strong side flow was applied to include the wake flow effects of the submarine or ocean tide.

  • PDF

측류유동을 고려한 실린더 주위의 캐비테이션 유동 현상 해석 (SIMULATION OF CAVITATING FLOW PAST CYLINDERS WITH STRONG SIDE FLOW)

  • 이병우;박원규;이건철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.149-154
    • /
    • 2009
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has focused on the simulation of cavitating flow past cylinders with strong side flow. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved liquid and vapor phase, separately. An implicit dual time and preconditioning method are employed for computational analysis. The results from the present solver have been in a fairly good agreement with the experimental data and other numerical results. After the code validation the strong side flow was applied to include the wake flow effect of the submarine.

  • PDF

원심형 팬의 유동해석에 관한 연구 (Flow Field Analysis of a Centrifugal Fan)

  • 임종수;김창성;신동신;노오현;이수갑
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.105-114
    • /
    • 1998
  • Flow field and near-field noise of a centrifugal fan has been studied with an efrcient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed two-dimensional. Most of the compressible studies has been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in term s of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF

EM Solver 의 주파수 응답 데이터를 이용한 RF 수동 소자의 등가회로 모델링에 관한 연구 (Equivalent Circuit Model of RF passive components based on its simulated frequency response data)

  • 오상배;고재형;한형석;김형석
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2007년도 학술대회
    • /
    • pp.27-30
    • /
    • 2007
  • This paper deals with an equivalent circuit model for RF passive components. Rational functions are obtained from the frequency responses of EM simulation by using Foster canonical partial fraction expressions. The Vector Fitting(VF) and the Adaptive Frequency Sampling(AFS) scheme are also implemented to obtain the rational functions. A passivity enforcement algorithm is applied to ensure the stability of the equivalent circuit model. In order to verify the schemes, S parameters of the equivalent circuit model is compared to those of EM simulation in case of the microstrip line structure with 3 slots in ground.

  • PDF

ALE 기반의 고체 로켓 내부 유체-구조 연동 해석 (ALE-BASED FSI SIMULATION OF SOLID PROPELLANT ROCKET INTERIOR)

  • 한상호;민대호;김종암
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.71-77
    • /
    • 2010
  • As a hybrid model of continuum motion description which combines the advantages of classical kinematical descriptions i.e. Lagrangian and Eulerian description, the ALE (Arbitrary Lagrangian Eulerian) description is adopted for the simulation of a fluid-structure interaction of solid propellant rocket interior. The fluid-structure interaction phenomenon with the deformation of solid domain during the simulation. The developed solver is applied flow and propellant structure. The computed results show complex flow physics in the combustion chamber and the behavior of a solid propellant deformation.

  • PDF

CFD prediction of vortex induced vibrations and fatigue assessment for deepwater marine risers

  • Kamble, Chetna;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • 제6권4호
    • /
    • pp.325-344
    • /
    • 2016
  • Using 3D computational fluid dynamics techniques in recent years have shed significant light on the Vortex Induced Vibrations (VIV) encountered by deep-water marine risers. The fatigue damage accumulated due to these vibrations has posed a great concern to the offshore industry. This paper aims to present an algorithm to predict the crossflow and inline fatigue damage for very long (L/D > $10^3$) marine risers using a Finite-Analytical Navier-Stokes (FANS) technique coupled with a tensioned beam motion solver and rainflow counting fatigue module. Large Eddy Simulation (LES) method has been used to simulate the turbulence in the flow. An overset grid system is employed to mesh the riser geometry and the wake field around the riser. Risers from NDP (2003) and Miami (2006) experiments are used for simulation with uniform, linearly sheared and non-uniform (non-linearly sheared) current profiles. The simulation results including inline and crossflow motion, modal decomposition, spectral densities and fatigue damage rate are compared to the experimental data and useful conclusions are drawn.

Bluff-body 연소기의 비반응 유동에 대한 대 와동 모사 (Large Eddy Simulation of Non-reacting Flow in Bluff-body Combustor)

  • 공민석;황철홍;이창언
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.250-257
    • /
    • 2005
  • Large eddy simulation{LES) methodology used to model a bluff-body stabilized non-reacting flow. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results was compared with that of Reynolds Averaged Navier-Stokes(RANS) using $k-{\epsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. However, in the quantitative analysis, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

  • PDF

Realistic Visual Simulation of Water Effects in Response to Human Motion using a Depth Camera

  • Kim, Jong-Hyun;Lee, Jung;Kim, Chang-Hun;Kim, Sun-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1019-1031
    • /
    • 2017
  • In this study, we propose a new method for simulating water responding to human motion. Motion data obtained from motion-capture devices are represented as a jointed skeleton, which interacts with the velocity field in the water simulation. To integrate the motion data into the water simulation space, it is necessary to establish a mapping relationship between two fields with different properties. However, there can be severe numerical instability if the mapping breaks down, with the realism of the human-water interaction being adversely affected. To address this problem, our method extends the joint velocity mapped to each grid point to neighboring nodes. We refine these extended velocities to enable increased robustness in the water solver. Our experimental results demonstrate that water animation can be made to respond to human motions such as walking and jumping.