• 제목/요약/키워드: simplified vortex model

검색결과 15건 처리시간 0.021초

A simplified vortex model for the mechanism of vortex-induced vibrations in a streamlined closed-box girder

  • Hu, Chuanxin;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • 제32권4호
    • /
    • pp.309-319
    • /
    • 2021
  • The vortex-drift pattern over a girder surface, actually demonstrating the complex fluid-structure interactions between the structure and surrounding flow, is strongly correlated with the VIVs but has still not been elucidated and may be useful for modeling VIVs. The complex fluid-structure interactions between the structure and surrounding flow are considerably simplified in constructing a vortex model to describe the vortex-drift pattern characterized by the ratio of the vortex-drift velocity to the oncoming flow velocity, considering the aerodynamic work. A spring-suspended sectional model (SSSM) is used to measure the pressure in wind tunnel tests, and the aerodynamic parameters for a typical streamlined closed-box girder are obtained from the spatial distribution of the phase lags between the distributed aerodynamic forces at each pressure point and the vortex-excited forces (VEFs). The results show that the ratio of the vortex-drift velocity to the oncoming flow velocity is inversely proportional to the vibration amplitude in the lock-in region and therefore attributed to the "lock-in" phenomena of the VIVs. Installing spoilers on handrails can destroy the regular vortex-drift pattern along the girder surface and thus suppress vertical VIVs.

Successive Interactions of a Shock Wave with Serially Arranged Vortices

  • Chang, Se-Myong;Chang, Keun-Shik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권4호
    • /
    • pp.664-670
    • /
    • 2004
  • Navier-Stokes computation based on a new simplified model is proposed to investigate the interactions of a moving shock wave with multiple vortices arranged in the serial manner. This model problem simulates shock-vortexlet interactions at the shear layer of a compressible vortex often observed in the experiment. Applying the Foppl's idea, we extended the Rankin's model generally used for the description of a single vortex to the multi-vortex version. The acoustic pulses accelerated and decelerated are successively generated and propagated from each shock-vortex interaction, which simply explains the genesis of eccentrically diverging acoustic waves appearing in the experimental photograph.

Disturbance in the Daytime Midlatitude Upper F Region Associated with a Medium Scale Electrodynamic Vortex Motion of Plasma

  • Hegai, Valery V.;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • 제33권3호
    • /
    • pp.207-210
    • /
    • 2016
  • Under the assumption of the presence of a medium-scale E × B drift vortex of plasma in the daytime midlatitude F region, and using a simplified ionospheric model, we demonstrate that the E × B drift produces noticeable perturbations in the horizontal distribution of the plasma density in the upper F region. The pattern of ion density perturbations shows two separate medium scale domains of enhanced and reduced ion density with respect to the background. The E × B drift does not produce multiple small-scale ion density irregularities through plasma mixing because of the suppression effect of the field-aligned ambipolar plasma diffusion.

LES를 이용한 판토그라프 팬헤드의 와 흘림 현상 해석 (ANALYSIS OF VORTEX SHEDDING PHENOMENA AROUND PANTOGRAPH PANHEAD FOR TRAIN USING LARGE EDDY SIMULATION)

  • 장용준
    • 한국전산유체공학회지
    • /
    • 제16권2호
    • /
    • pp.17-23
    • /
    • 2011
  • The turbulent flow and vortex shedding phenomena around pantograph panhead of high speed train were investigated and compared with available experimental data and other simulations. The pantograph head was simplified to be a square-cross-section pillar and assumed to be no interference with other bodies. The Reynolds number (Re) was 22,000. The LES(large eddy simulation) of FDS code was applied to solve the momentum equations and the Wener-Wengle wall model was employed to solve the near wall turbulent flow. Smagorinsky model($C_s$=0.2) was used as SGS(subgrid scale) model. The total grid numbers were about 9 millions and the analyzed domain was divided into 12 multi blocks which were communicated with each other by MPI. The time-averaged mainstream flows were calculated and well compared with experimental data. The phased-averaged quantities had also a good agreement with experimental data. The near-wall turbulence should be carefully treated by wall function or direct resolution to get successful application of LES methods.

예조건화 압축성 알고리듬을 이용한 층류 분무연소장 해석 (The Application of Preconditioning in Laminar Spray Combustion Analysis)

  • 황용석;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.128-137
    • /
    • 1998
  • In this numerical experiment, the preconditioned compressible Navier-Stokes equation is tested to analyze the laminar spray combustion. Sprayed flow field is formulated by Eulerian-Lagrangian system for the gas and liquid phases each. DSF(Deterministic Separated Flow) model was adopted for the sprays with the vortex model to describe transients of individual droplet heating. Simplified single global reaction model approximates methanol-air reaction with and without disk flame holder. The equation system is discretized by finite difference technique and time integrated by LU-SGS. Due to greatly simplified chemical reaction mechanism and the lack of experimental evidences, most of the efforts were devoted to show the applicability and robustness of preconditioned compressible flow calculation algorithm. Computation results in qualitatively reasonable combusting flow field, hence it is believed that further refinement are required to produce quantitatively accurate solutions.

  • PDF

Tomographic PIV measurement of internal complex flow of an evaporating droplet with non-uniformly receding contact lines

  • Kim, Hyoungsoo;Belmiloud, Naser;Mertens, Paul W.
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.31-39
    • /
    • 2016
  • We investigate an internal flow pattern of an evaporating droplet where the contact line non-uniformly recedes. By using tomographic Particle Image Velocimetry, we observe a three-dimensional azimuthal vortex pair that is maintained until the droplet is completely dried. The non-uniformly receding contact line motion breaks the flow symmetry. Finally, a simplified scaling model presents that the mechanical stress along the contact line is proportional to the vorticity magnitude, which is validated by the experimental results.

Modeling of Fine Sediment Transport under Multiple Breakwaters of Surface-Piercing Type

  • Lee, J. L.;Oh, M. R.
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.557-562
    • /
    • 2004
  • A surface-piercing barrier model is presented for understanding morphological development in the sheltered region and investigating the main factors causing the severe accumulation. Surface-piercing structures like vertical barriers, surface docks and floating breakwaters are recently favored from the point of view of a marine scenario since they do not in general partition the natural sea. The numerical solutions are compared with experimental data on wave profiles and morphological change rates within a rectangular harbor of a constant depth protected by surface-piercing thin breakwaters as a simplified problem. Our numerical study involves several modules: 1) wave dynamics analyzed by a plane-wave approximation, 2) suspended sediment transport combined with sediment erosion-deposition model, and 3) concurrent morphological changes. Scattering waves are solved by using a plane wave method without inclusion of evanescent modes. Evanescent modes are only considered in predicting the reflection ratio against the vertical barrier and energy losses due to vortex shedding from the lower edge of plate are taken into account. A new relationship to relate the near-bed concentration to the depth-mean concentration is presented by analyzing the vertical structure of concentration. The numerical solutions were also compared with experimental data on morphological changes within a rectangular harbor of constant water depth. Through the numerical experiments, the vortex-induced flow appears to be not ignorable in predicting the morphological changes although the immersion depth of a plate is not deep.

  • PDF

Time domain flutter analysis of the Great Belt East Bridge

  • Briseghella, Lamberto;Franchetti, Paolo;Secchi, Stefano
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.479-492
    • /
    • 2002
  • A finite element aerodynamic model that can be used to analyse flutter instability of long span bridges in the time domain is presented. This approach adopts a simplified quasi-steady formulation of the wind forces neglecting the vortex shedding effects. The governing equations used are effective only for reduced velocities $V^*$ sufficiently great: this is generally acceptable for long-span suspension bridges and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglected. The procedure describes the mechanical response in an accurate way, taking into account the non-linear geometry effects (large displacements and large strains) and considering also the compressed locked coil strands instability. The time-dependence of the inertia force due to fluid structure interaction is not considered. The numerical examples are performed on the three-dimensional finite element model of the Great Belt East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results show good agreement with the experimental measurements of the full bridge aeroelastic model in the wind tunnel tests. Significant parameters affecting bridge response are introduced and accurately investigated.

그루브의 Trap 효과에 대한 CFD 해석: 제 1부 − 그루브 단면 형상의 변화 (CFD Analysis of Trap Effect of Groove in Lubricating Systems: Part I - Variation in Cross-Sectional Shape of Groove)

  • 홍성호
    • Tribology and Lubricants
    • /
    • 제32권3호
    • /
    • pp.101-105
    • /
    • 2016
  • Trap effect of groove is evaluated in a lubricating system using computational fluid dynamics (CFD) analysis. The simulation is based on the standard k-ε turbulence model and the discrete phase model (DPM) using a commercial CFD code FLUENT. The simulation results are also capable of showing the particle trajectories in flow field. Computational domain is meshed using the GAMBIT pre-processor. The various grooves are applied in order to improve lubrication characteristics such as reduction of friction loss, increase in load carrying capacity, and trapping of the wear particles. Trap effect of groove is investigated with variations in cross-sectional shape and Reynolds number in this research. Various cross-sectional shapes of groove (rectangular, triangle, U shaped, trapezoid, elliptical shapes) are considered to evaluate the trap effect in simplified two-dimensional sliding bearing. The particles are assumed to steel, and defined a single particle injection condition in various positions. The “reflect” boundary condition for discrete phase is applied to the wall boundary, and the “escape” boundary condition to “pressure inlet” and “pressure outlet” conditions. The streamlines are compared with particles trajectories in the groove. From the results of numerical analysis in the study, it is found that the cross-sectional shapes favorable to the creation of vortex and small eddy current are effective in terms of particle trapping effect. Moreover, it is found that the Reynolds number has a strong influence on the pattern of vortex or small eddy current in the groove, and that the pattern of the vortex or small eddy current affects the trap effect of the groove.

Lock-in and drag amplification effects in slender line-like structures through CFD

  • Belver, Ali Vasallo;Iban, Antolin Lorenzana;Rossi, Riccardo
    • Wind and Structures
    • /
    • 제15권3호
    • /
    • pp.189-208
    • /
    • 2012
  • Lock-in and drag amplification phenomena are studied for a flexible cantilever using a simplified fluid-structure interaction approach. Instead of solving the 3D domain, a simplified setup is devised, in which 2D flow problems are solved on a number of planes parallel to the wind direction and transversal to the structure. On such planes, the incompressible Navier-Stokes equations are solved to estimate the fluid action at different positions of the line-like structure. The fluid flow on each plane is coupled with the structural deformation at the corresponding position, affecting the dynamic behaviour of the system. An Arbitrary Lagrangian-Eulerian (ALE) approach is used to take in account the deformation of the domain, and a fractional-step scheme is used to solve the fluid field. The stabilization of incompressibility and convection is achieved through orthogonal quasi-static subscales, an approach that is believed to provide a first step towards turbulence modelling. In order to model the structural problem, a special one-dimensional element for thin walled cross-section beam is implemented. The standard second-order Bossak method is used for the time integration of the structural problem.