• Title/Summary/Keyword: simplified vibration model

Search Result 200, Processing Time 0.045 seconds

Acoustic impedance model of perforated elements with both grazing and bias flow (스치는 유동과 관통 유동의 영향을 고려한 천공 요소의 음향 임피던스 모델)

  • Lee, Seong-Hyun;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1372-1375
    • /
    • 2006
  • The simplified impedance model which can consider a combined flow condition was suggested. Although the strength and position of the shear layer cannot be obtained by a linear sum of two separate contributions when both flows occur together, it was simply assumed that the impedance under the combined flow follows from summing the separate flow impedance. To validate the simplified impedance model, acoustic properties of a concentric resonator was predicted and measured. The predicted transmission loss using the simplified model shows reasonable agreements with measurements. One can find that the simplified impedance model obtained by the superposition of the separate flow impedances can be adjusted to predict the acoustic properties of a concentric resonator.

  • PDF

Analysis of The Behavior of Kurtosis By Simplified Model of One Sided Affiliated Impact Vibration

  • Takeyasu, Kazuhiro;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.192-197
    • /
    • 2005
  • Among many amplitude parameters, Kurtosis (4-th normalized moment of probability density function) is recognized to be the sensitive good parameter for machine diagnosis. Kurtosis has a value of 3.0 under normal condition and the value generally goes up as the deterioration proceeds. In this paper, simplified calculation method of kurtosis is introduced for the analysis of impact vibration with one sided affiliated impact vibration which occurs towards the progress of time. That phenomenon is often watched in the failure of such as bearings’ outer race. One sided affiliated impact vibration is approximated by one sided triangle towards the progress of time and simplified calculation method is introduced. Varying the shape of one sided triangle, various models are examined and it is proved that new index is a sensitive good index for machine failure diagnosis. Utilizing this method, the behavior of kurtosis is forecasted and analyzed while watching machine condition and correct diagnosis is executed.

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.

development of a model of the exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 이장명;박성태;김상호;조규수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.370-376
    • /
    • 1997
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model , Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF

Study on a reduction of railway vibration using impact dampers (충돌 댐퍼를 이용한 레일 진동 저감 연구)

  • Yang, Wonseok;Ahn, Sangkeun;Koh, Hyoin;Park, Junhong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.119-120
    • /
    • 2014
  • This study presents an development of impact damper and its application to reduction of railway vibration from moving roads. The impact damper for reducing trnsverse vibration from moving loads were designed and verified using simple dynamic model. To verify the performance of the impact damper, the vibration of a simplified beam with the impact damper was measured. The performance on reducing vibration for different clearance and mass ratio of the damper was investigated. The numerical solutions were verified using the experimental results from a simplified beam. The result can be utilized to reduce the rolling noise from high-speed trains.

  • PDF

The Design of an Optical Pick-up Actuator Suspension (광픽업용 서스펜션의 개발연구)

  • 김윤영;윤민수;김진홍;박의호;한준용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.136-141
    • /
    • 1996
  • A new suspension model of an optical pick-up actuator is developed. This model is very stable and easily manufactured owing to its specially designed geometry. In designing the suspension, the first two natural frequencies are kept lying in a certain range and sub-resonance frequencies are made as high as possible. The vibration and sensitivity analysis needed for optimal design is based on a simplified beam model of the bobbin-suspension structure. The investigation of the strain energy distribution in each vibration mode appears to be very useful.

  • PDF

Development of Finite Element Tire Model for Vehicle Dynamics Analysis (차량동역학 해석용 타이어 유한요소 모델 개발)

  • Jung, Sung Pil;Lee, Tae Hee;Kim, Gi Whan;Yun, So Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.858-861
    • /
    • 2014
  • This paper presents a simplified finite element tire model for vehicle dynamics analysis. The classical finite element tire model was too big to simulate dynamic properties of the tire. In the simplified model, number of nodes of the tire model was dramatically reduced, and thus its simulation time was several times less than the classical model. Bead, carcass, belt which have an important role to the dynamic characteristics of tire were replaced by simple axis symmetric membrane elements. Also the rebar element was deleted. The tire model has been verified by comparing vertical stiffness data of the simulation model to the test data.

  • PDF

Dynamic Analysis of the Effect of Base Flexibility on a Spinning Disk Dynamics in a Small Size Disk Drive (소형 디스크 드라이브에 있어서 베이스 강성이 회전하는 원판에 미치는 동적영향 분석)

  • Lee, Sung-Jin;Hong, Soon-Kyo;Cheong, Young-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.601-606
    • /
    • 2001
  • Free vibration analysis was performed for a spinning disk/spindle system mounted on a flexible baseplate. A simplified model was presented considering the effects of the baseplate flexibility on a disk/spindle system, and the equations of motion were derived by the assumed mode method and Lagrange's equation. From the results of the tree vibration analysis, the variations of the natural frequencies were investigated by changing rotating speed, baseplate thickness. They were attributed to the coupling between the flexible modes of the spinning disk/spindle system and the baseplate. This simplified model was used to predict the dynamic characteristics of a small size disk drive. The validity of the simplified model was verified by experiments and FE analysis.

  • PDF

Development of a Model of the Exhaust System for the Stress Analysis (응력해석을 위한 배기계 모델 개발)

  • 김상호;이장명;박성태
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.295-301
    • /
    • 1999
  • A Simplified Finite Element Method(FEM) model has been developed for the Exhaust System. For the verification of the usage of the developed model. Natural Frequencies, Mode Shapes and Frequency Response Function have been compared between numerical analysis and experimental result. It shows that the developed numerical model also can be utilized to prove the Stress distribution of the Exhaust System if it can be adopted for the vibration analysis adequately.

  • PDF