• Title/Summary/Keyword: simplified thermal elasto-plastic analysis

Search Result 11, Processing Time 0.024 seconds

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.3
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

A Study on the Prediction of Deformations of Plates due to Line Heating Using a Simplified Thermal Elasto-Plastic Analysis Method (간이 열탄소성 해석을 이용한 선상가열에 의한 판의 변형 예측에 관한 연구)

  • Jang, C.D.;Seo, S.I.;Ko, D.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.3
    • /
    • pp.104-112
    • /
    • 1997
  • Line heating process has been used in forming hull surfaces long before and it has depended on skillful workers. As the reduction of production cost is major concern of shipbuilding companies, line heating work must be improved for higher productivity. In this paper, as the first step to automatic hull forming, a method is proposed to predict deformations due to line heating. It includes a simplified thermal elasto-plastic analysis to increase computing efficiency and to do real time visualization of deformed shapes. For the prediction of deformation, a method to estimate heat flux of the torch is also introduced. Predicted deformations for line heated plates show good agreement with experimental results. The proposed method can be used in control and simulation of line heating process with ease.

  • PDF

On the Effect of Plate Curvature on Welding Deformation (용접변형에의 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung;Lee, Jin-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model (Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구)

  • Jang Kyoung-Bok;Cho Si-Hoon;Jang Tae-Won
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

On the Prediction of Deformation of Welded Built-up Beams (용접 조립보의 변형 예측에 관한 연구)

  • Chang-Doo Jang;Seung-Il Seo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.3
    • /
    • pp.145-153
    • /
    • 1994
  • In the fabrication of welded built-up beams, longitudinal deformation occurs due to welding, and this obstructs improvement of productivity and quality. In this study, to estimate the deformation due to welding, a simplified thermal elasto-plastic analysis method is proposed and verified by experiments. From the results of the simplified analysis, it is clarified that deformation coefficients defined in this study are the function of fabrication parameters. Based on this simplified analysis, a method to simulate the fabrication procedures for the built-up beams can be developed.

  • PDF

A Simplified Method to Predict the Weld-induced Deformation of Curved Plates (곡판의 용접변형 예측을 위한 간이 해석법)

  • Lee, Joo-Sung;Hoi, Nguyen Tan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.5
    • /
    • pp.474-481
    • /
    • 2007
  • A three-dimensional finite element model has been used to simulate the bead on plate welding of curved steel plates having curvature in the welding direction. By using traditional method such as thermal-elastic-plastic(TEP) finite element analysis. the weld-induced deformation can be accurately predicted. However, three-dimensional finite element analysis is not practical in analyzing the weld-induced deformation of large and complex structures such as ship structures in view of computing time and cost. In this study, used is the equivalent loading method based on inherent strain to illustrate the effect of the longitudinal curvature upon the weld-induced deformation of curved plates.

A Study on the Prediction of Deformation of Welded Structures (용접구조물의 변형 예측에 관한 연구)

  • 서승일;장창두
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.64-73
    • /
    • 1997
  • Deformations of structures due to welding appear much complicated and deformated modes are also complex. As parameters governing deformations are various and effect of parameters on deformations is not well known, precise prediction of deformation due to welding has been a difficult problem. Until now, many research papers as to welding deformation have been published, but the research results can explain only one aspect of welding deformation have been published, but the research results can explain only one aspect of welding deformation and are hard to be used in reasonable prediction of welding deformations in complicated structures. In this study, based on the accumulated results concerning to welding deformations, a practical method to predict complicated welding deformations of large structure is proposed. A simplified model to estimate residual plastic strains is suggested and main parameters affecting residual plastic strains are shown to be heat input and joint restaints. Inherent strain theory and experimental data are combined with the finite element method and welding deformations of large structures are calculated by elastic analysis. Comparison of calculated results with experimental data shows the accuracy and validity of the proposed method.

  • PDF

Thermal Deformation of Curved Plates by Line Heating (선상가열법에 의한 곡판의 열변형)

  • LEE JOO-SUNG;LIM DONG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.33-38
    • /
    • 2005
  • It has been well documented that plate forming is one of the most important processes in shipbuilding. In the most shipyards, the line heating method is primarily used for plate forming. Since the heating process is carried out for the curved plate and not for the flat plate, a curvature effect on the final deformation must be considered in deriving the simplified prediction models for deformation. This paper investigates the effect of curvature along the heating line on the deformation of the plate. First of all, results of numerical analysis are compared with these of a line-heating test, to justify the elasto-plastic analysis procedure for the present study, which shows good agreement. Then, the present numerical procedure is applied to flat and curved plate models, to investigate the curvature effect on the heat transfer characteristics and deformation by line heating.

Analysis of Welding Distortion of Large Steel Plate by Using Analytical Solution of Temperature Distribution and Finite Element Method (온도분포 해석 해와 유한요소법을 이용한 대형 강판의 용접변형 해석)

  • Hong, Sung-Bin;Bae, Kang-Yul;Yang, Young-Soo
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.69-74
    • /
    • 2014
  • Welding distortions of large steel structures had mainly been estimated with some simplified formula obtained by lots of experience and numerical analyses for small steel structures. However, the large structures would have different characteristics of distortion with welding because of their own stiffness coming from the size itself. Therefore, in order to find some measures for preventing welding distortion of large structure, it is requite in advance to precisely analysis thermal stress and distortion during welding of the structure. Numerical analysis for larger structure has been known to take large amount of calculation time and have a poor convergency problem during the thermo-elasto-plastic calculation. In this study, a hybrid method is proposed to analysis the thermal stress and distortion of a large steel plate with the finite element analysis by incorporating with temperature distribution of the plate calculated by an analytical solution. The proposed method revealed that the thermo-mechanical analysis for welding of the large structure could be performed with a good convergence and produced precise results with much reduced time consumption.

Realtime Simulation of Deformation due to Line Heating for Automatic Hull Forming System (곡가공 자동화 시스템을 위한 선상가열에 의한 변형의 실시간 시뮬레이션)

  • Dae-Eun Ko;Chang-Doo Jang;Seung-Il Seo;Hae-Woo Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.4
    • /
    • pp.116-127
    • /
    • 1999
  • Line heating is a method widely used in forming ship hull surface. From the viewpoint of mechanics it is large deformation thermal elasto-plastic problem of arbitrary shaped plate. Many researches have been carried out to resolve this problem. Especially, Jang et al.[1] proposed a simplified thermal elasto-plastic analysis method to predict effectively the deformation of plate due to line heating. In this paper, we improved the method of Jang et al.[1] by considering tension yielding in temperature decreasing stage and verified with experimental results. FEA program using MITC4 degenerated shell element was made to deal with elastic large deformation problem. The newly proposed method can be used in the simulation and control of forming hull surface for higher productivity with simplicity and efficiency.

  • PDF