• Title/Summary/Keyword: simplified modeling

Search Result 485, Processing Time 0.026 seconds

Realistic simulation of reinforced concrete structural systems with combine of simplified and rigorous component model

  • Chen, Hung-Ming;Iranata, Data
    • Structural Engineering and Mechanics
    • /
    • v.30 no.5
    • /
    • pp.619-645
    • /
    • 2008
  • This study presents the efficiency of simulating structural systems using a method that combines a simplified component model (SCM) and rigorous component model (RCM). To achieve a realistic simulation of structural systems, a numerical model must be adequately capturing the detailed behaviors of real systems at various scales. However, capturing all details represented within an entire structural system by very fine meshes is practically impossible due to technological limitations on computational engineering. Therefore, this research develops an approach to simulate large-scale structural systems that combines a simplified global model with multiple detailed component models adjusted to various scales. Each correlated multi-scale simulation model is linked to others using a multi-level hierarchical modeling simulation method. Simulations are performed using nonlinear finite element analysis. The proposed method is applied in an analysis of a simple reinforced concrete structure and the Reuipu Elementary School (an existing structure), with analysis results then compared to actual onsite observations. The proposed method obtained results very close to onsite observations, indicating the efficiency of the proposed model in simulating structural system behavior.

The Study of Stiffness Evaluation Technique for L, T Shaped Joint Structures Using Normal Modes Analysis with Lumped Mass (모드해석을 이용한 L, T 자형 구조물의 결합 강성 평가 방법에 대한 연구)

  • Hur, Deog-Jae;Jung, Jae-Yup;Cho, Yeon;Park, Tae-Won
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.975-983
    • /
    • 1999
  • This paper describes the dynamic characteristics of the joint structures in case of using the simplified beam model in the F. E. analysis. The modeling errors, when replace the shell with the beam, are investigated through F. E. normal modes analysis. Normal mode analysis were performed to obtain the natural frequencies of the L and T shaped joints with various type of channels. The results were analyzed to access the effects of the models on the accuracy of F.E. analysis by identifying the geometric factors which cause the error. The geometric factors considered are joint angle, channel length, thickness and area ratio of the hollow section to the filled one. The joint stiffness evaluation technique is developed in this study using normal modes analysis with Lumped Mass. With this method, the progressively improved results of F. E. analysis are obtained using the simplified beam model. The static and normal modes analysis are performed with the joint stiffness values obtained by the Kazunori Shimonkakis' virtual stiffness method and the proposed method and these simplified modeling errors are compared.

  • PDF

Simplified Modeling of Deflagration in Vessels

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1338-1348
    • /
    • 2004
  • A simplified method that models the deflagration process occurring in closed or vented vessels is described. When combustion occurs within the spherical or cylindrical vessels, the flame moves spherically or segmentally to the vessel periphery. The volume and area of each element along the propagating flame front are calculated by using simple geometrical rules. For instabilities and turbulence resulting in enhanced burning rates, a simple analysis results in reasonable agreement with the experimental pressure transients when two burning rates (a laminar burning rate prior to the onset of instability and an enhanced burning rate) were used. Pressure reduction caused by a vent opening at predetermined pressure was modeled. Parameters examined in the modeling include ignition location, mixture concentration, vented area, and vent opening pressure. It was found that venting was effective in reducing the peak pressure experienced in vessels. The model can be expected to estimate reasonable peak pressures and flame front distances by modeling the enhanced burning rates, that is, turbulent enhancement factor.

Seismic Assessment and Performance of Nonstructural Components Affected by Structural Modeling

  • Hur, Jieun;Althoff, Eric;Sezen, Halil;Denning, Richard;Aldemir, Tunc
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.387-394
    • /
    • 2017
  • Seismic probabilistic risk assessment (SPRA) requires a large number of simulations to evaluate the seismic vulnerability of structural and nonstructural components in nuclear power plants. The effect of structural modeling and analysis assumptions on dynamic analysis of 3D and simplified 2D stick models of auxiliary buildings and the attached nonstructural components is investigated. Dynamic characteristics and seismic performance of building models are also evaluated, as well as the computational accuracy of the models. The presented results provide a better understanding of the dynamic behavior and seismic performance of auxiliary buildings. The results also help to quantify the impact of uncertainties associated with modeling and analysis of simplified numerical models of structural and nonstructural components subjected to seismic shaking on the predicted seismic failure probabilities of these systems.

A method for Simplified and Equivalent Finite Element Modeling Using Optimization Technique (최적화를 이용한 단순 유화 요소 모델링 기법 개발)

  • Lee, Gwang-Won;Seok, Il-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • As computer power is increased, refined finite element models are employed for structural analysis. However, it is difficult and expensive to use refined models in the design stage. The refined models especially cause problems in the preliminary design where the design is frequently changed. Therefore, simplified models are needed. The simplification process is regarded as an empirical technique. Simplified and equivalent finite element model of a structure has been studied and used in the preliminary design. A general approach to establish the simplified and equivalent model is presented. The generated simple model has satisfactory correlation with the corresponding refined finite element model. An optimization method, the Goal Programming algorithm is used to make the simple model. The simplified model is used for the design change and the changed design is recovered onto the original design. The presented method was verified with three examples.

A Study Integrated-Power-System Simulation Model of All-Electric-Ship (전기추진선박의 통합전력계통 시뮬레이션 모델에 관한 연구)

  • Ku, Hyun-Keun;Kwak, Ki-Kon;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.45-50
    • /
    • 2015
  • The simulation model of All-Electric-Ship consists of electrical and mechanical systems. Running the total simulation requires considerable time and causes a lack of computer memory, because the two systems have different dynamic characteristics. Therefore, integrated simulation is practically impossible. This paper proposes the simplified model of electrical system to reduce simulation time significantly, compared to the detailed model. The validity of the proposed simplified model is verified by comparing detailed and simplified simulation results. Thus, the simplified models are applied to the integrated system. As a result, total system simulation can be implemented.

Study on the mechanical behaviors of timber frame with the simplified column foot joints

  • Yang, Qing-shan;He, Jun-xiao;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.383-394
    • /
    • 2021
  • Column foot in traditional Chinese timber structures may be subjected to be uplifted due to the lateral load and subsequently reset under the vertical loads. The residual moment of the rocking column foot is the most important parameter representing the mechanical behaviors of column foot, and the simplification of joints is the basis of structural analysis of whole structure. The complicated mechanical behaviors of joint and the modeling of the column foot joint has been undertaken historically based on the experiments and numerical simulation. On the condition of limited application range of those models, a lack of simplified model to represent the mechanical behaviors of joint deserves attentions. There is a great need to undertake theoretical studies to derive the residual moment and make better simplified model of the joint. This paper proposes the residual moment and equivalent simplified model of the rotational stiffness for column foot joint. And, the timber frame is established based on the simplified model, which is verified by solid finite element model. Results show that a mutual agreement on the mechanical behaviors of the timber frame is obtained between the simplified model and the solid finite element model. This study can serve as the references of the structural analysis for the traditional timber structures.

Weight and topology optimization of outrigger-braced tall steel structures subjected to the wind loading using GA

  • Nouri, Farshid;Ashtari, Payam
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.489-508
    • /
    • 2015
  • In this paper, a novel methodology is proposed to obtain optimum location of outriggers. The method utilizes genetic algorithm (GA) for shape and size optimization of outrigger-braced tall structures. In spite of previous studies (simplified methods), current study is based on exact modeling of the structure in a computer program developed on Matlab in conjunction with OpenSees. In addition to that, exact wind loading distribution is calculated in accordance with ASCE 7-10. This is novel since in previous studies wind loading distributions were assumed to be uniform or triangular. Also, a new penalty coefficient is proposed which is suitable for optimization of tall buildings. Newly proposed penalty coefficient improves the performance of GA and results in a faster convergence. Optimum location and number of outriggers is investigated. Also, contribution of factors like central core and outrigger rigidity is assessed by analyzing several design examples. According to the results of analysis, exact wind load distribution and modeling of all structural elements, yields optimum designs which are in contrast of simplified methods results. For taller frames significant increase of wind pressure changes the optimum location of outriggers obtained by simplified methods. Ratio of optimum location to the height of the structure for minimizing weight and satisfying serviceability constraints is not a fixed value. Ratio highly depends on height of the structure, core and outriggers stiffness and lateral wind loading distribution.

Simplified Failure Mechanism for the Prediction of Tunnel Crown and Excavation Front Displacements

  • Moghaddam, Rozbeh B.;Kim, Mintae
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.101-112
    • /
    • 2019
  • This case study presented a simplified failure mechanism approach used as a preliminary deformation prediction for the Mexico City's metro system expansion. Because of the Mexico City's difficult subsoils, Line 12 project was considered one of the most challenging projects in Mexico. Mexico City's subsurface conditions can be described as a multilayered stratigraphy changing from soft high plastic clays to dense to very dense cemented sands. The Line 12 trajectory crossed all three main geotechnical Zones in Mexico City. Starting from to west of the City, Line 12 was projected to pass through very dense cemented sands corresponding to the Foothills zone changing to the Transition zone and finalizing in the Lake zone. Due to the change in the subsurface conditions, different constructions methods were implemented including the use of TBM (Tunnel Boring Machine), the NATM (New Austrian Tunneling Method), and cut-and-cover using braced Diaphragm walls for the underground section of the project. Preliminary crown and excavation front deformations were determined using a simplified failure mechanism prior to performing finite element modeling and analysis. Results showed corresponding deformations for the crown and the excavation front to be 3.5cm (1.4in) and 6cm (2.4in), respectively. Considering the complexity of Mexico City's difficult subsoil formation, construction method selection becomes a challenge to overcome. The use of a preliminary results in order to have a notion of possible deformations prior to advanced modeling and analysis could be beneficial and helpful to select possible construction procedures.

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF