• Title/Summary/Keyword: simplified inference

Search Result 79, Processing Time 0.024 seconds

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

Fuzzy-Neural Networks by Means of Advanced Clonal Selection of Immune Algorithm and Its Application to Traffic Route Choice (면역 알고리즘의 개선된 클론선택에 의한 퍼지 뉴로 네트워크와 교통경로선택으로의 응용)

  • Cho, Jae-Hoon;Kim, Dong-Hwa;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.402-410
    • /
    • 2004
  • In this paper, an optimal design method of clonal selection based Fuzzy-Neural Networks (FNN) model for complex and nonlinear systems is presented. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. Also Advanced Clonal Selection (ACS) is proposed to find the parameters such as parameters of membership functions, learning rates and momentum coefficients. The proposed method is based on an Immune Algorithm (IA) using biological Immune System and The performance is improved by control of differentiation rate. Through that procedure, the antibodies are producted variously and the parameter of FNN are optimized by selecting method of antibody with the best affinity against antigens such as object function and limitation condition. To evaluate the performance of the proposed method, we use the time series data for gas furnace and traffic route choice process.

Intellignce Modeling of Nonlinear Process System Using Fuzzy Neyral Networks-based Structure (퍼지-뉴럴네트워크 구조에 의한 비선형 공정시스템의 지능형 모델링)

  • 오성권;노석범;남궁문
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.41-55
    • /
    • 1995
  • In this paper, an optimal idenfication method using fuzzy-neural networks is proposed for modeling of nonlinear complex systems. The proposed fuzzy-neural modeling implements system structure and parameter identification using the intelligent schemes together wlth optimization theory, linguistic fuzzy implication rules, and neural networks(NNs) from input and output data of processes. Inference type for this fuzzy-neural modeling is presented as simplified inference. To obtain optimal model, the learning rates and momentum coefficients of fuzzy-neural networks(FNNs) are tuned automatically using improved modified complex method and modified learning algorithm. For the purpose of its application to nonlinear processes, data for route choice of traffic problems and those for activateti sluge process of sewage treatment system are used for the purpose of evaluating the performance of the proposed fuzzy-neural network modeling. The results show that the proposed method can produce the intelligence model with higher accuracy than other works achieved previously.

  • PDF

A Study on the Construction method to improve the fuzzy controllers using language variable and coefficient selecting method (언어변수 및 계수선택방법을 이용한 퍼지제어기 설계에 관한 연구)

  • 박승용;변기녕;황종학;김흥수
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.357-365
    • /
    • 2000
  • In this paper, we proposed a new circuit construction method that reduced the number of CMOS devices of singleton fuzzy controller(SFC) through the proposing a new membership function circuit(MFC) which uses the language variable selecting and the coefficient selecting circuit. According to the range of input values, we can choose the language variables beforehand which will be used in the inference. So we proposed the new MFC which generates the only necessary language variables. Also, we removed all rules of which adapting degree of their antecedents is zero through proposing the coefficient selecting circuit which beforehand selects the coefficients which will influence the inference result. Though this method, we simplified the structure of SFC and reduced the size of hardware. And to solve the problem in the current mode with respect to the restriction of the fan-out number, voltage-input and current-out membership function circuits are constituted of operational transconductance amplifiers. A membership function circuit which includes the language variable selecting circuit, a minimum operation circuit we implemented by current mode CMOS devices. As a result of applying proposed method, total numbers of blocks and devices wave decreased. If the number of variables and antecedents are getting larger, this method is more efficient.

  • PDF

A Design of Fuzzy Control System for Moving Object Tracking (이동물체 추적을 위한 퍼지제어 시스템 설계)

  • 강석범;김재기;양태규
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.738-745
    • /
    • 2001
  • In this paper, when the moving object move to the three-dimentional space, the tracking system track the moving object using the fuzzy reasoning. The joint angle el of the manipulator rotate from $0^{\circ}\; to\; 360^{\circ}$ , and the joint angle $\theta_2$rotate from$0^{\circ}\; to\; 360^{\circ}$. The fuzzy singleton is used for fuzzification and the control rule is twenty five and the fuzzy inference method is simplified Mamdani's reasoning and the defuzzification is the SCOG(Simplified Center Of Gravity) of the fuzzy controller To measure of the performance of the designed system, the fuzzy controller is compared with the CTM(Computed Torque Method) controller at the same condition. when the disturbance torque is ON, the both of CTM and fuzzy controller tracked object without error, However, the disturbance torque changed 0.4N, the CTM controller is 10 times greater than fuzzy controller at the sum of absolute error difference. The designed system is showed it's robustness against with disturbance.

  • PDF

Nonlinear Characteristics of Fuzzy Inference Systems by Means of Individual Input Space (개별 입력 공간에 의한 퍼지 추론 시스템의 비선형 특성)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5164-5171
    • /
    • 2011
  • In fuzzy modeling for nonlinear process, typically using the given data, the fuzzy rules are formed by the input variables and the space division by selecting the input variable and dividing the input space for each input variables. The premise part of the fuzzy rule is identified by selection of the input variables, the number of space division and membership functions and the consequent part of the fuzzy rule is identified by polynomial functions in the form of simplified and linear inference. In general, formation of fuzzy rules for nonlinear processes using the given data have the problem that the number of fuzzy rules exponentially increases. To solve this problem complex nonlinear process can be modeled by separately forming the fuzzy rules by means of fuzzy division of each input space. Therefore, this paper utilizes individual input space to generate fuzzy rules. The premise parameters of the fuzzy rules are identified by Min-Max method using the minimum and maximum values of input data set and membership functions are used as a series of triangular, gaussian-like, trapezoid-type membership functions. And lastly, using the data which is widely used in nonlinear process we evaluate the performance and the system characteristics.

Bayesian estimation of tension in bridge hangers using modal frequency measurements

  • Papadimitriou, Costas;Giakoumi, Konstantina;Argyris, Costas;Spyrou, Leonidas A.;Panetsos, Panagiotis
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.349-375
    • /
    • 2016
  • The tension of an arch bridge hanger is estimated using a number of experimentally identified modal frequencies. The hanger is connected through metallic plates to the bridge deck and arch. Two different categories of model classes are considered to simulate the vibrations of the hanger: an analytical model based on the Euler-Bernoulli beam theory, and a high-fidelity finite element (FE) model. A Bayesian parameter estimation and model selection method is used to discriminate between models, select the best model, and estimate the hanger tension and its uncertainty. It is demonstrated that the end plate connections and boundary conditions of the hanger due to the flexibility of the deck/arch significantly affect the estimate of the axial load and its uncertainty. A fixed-end high fidelity FE model of the hanger underestimates the hanger tension by more than 20 compared to a baseline FE model with flexible supports. Simplified beam models can give fairly accurate results, close to the ones obtained from the high fidelity FE model with flexible support conditions, provided that the concept of equivalent length is introduced and/or end rotational springs are included to simulate the flexibility of the hanger ends. The effect of the number of experimentally identified modal frequencies on the estimates of the hanger tension and its uncertainty is investigated.

Black-Box Classifier Interpretation Using Decision Tree and Fuzzy Logic-Based Classifier Implementation

  • Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.27-35
    • /
    • 2016
  • Black-box classifiers, such as artificial neural network and support vector machine, are a popular classifier because of its remarkable performance. They are applied in various fields such as inductive inferences, classifications, or regressions. However, by its characteristics, they cannot provide appropriate explanations how the classification results are derived. Therefore, there are plenty of actively discussed researches about interpreting trained black-box classifiers. In this paper, we propose a method to make a fuzzy logic-based classifier using extracted rules from the artificial neural network and support vector machine in order to interpret internal structures. As an object of classification, an anomalous propagation echo is selected which occurs frequently in radar data and becomes the problem in a precipitation estimation process. After applying a clustering method, learning dataset is generated from clusters. Using the learning dataset, artificial neural network and support vector machine are implemented. After that, decision trees for each classifier are generated. And they are used to implement simplified fuzzy logic-based classifiers by rule extraction and input selection. Finally, we can verify and compare performances. With actual occurrence cased of the anomalous propagation echo, we can determine the inner structures of the black-box classifiers.

A neuron computer model embedded Lukasiewicz' implication

  • Kobata, Kenji;Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.449-449
    • /
    • 2000
  • Many researchers have studied architectures for non-Neumann's computers because of escaping its bottleneck. To avoid the bottleneck, a neuron-based computer has been developed. The computer has only neurons and their connections, which are constructed of the learning. But still it has information processing facilities, and at the same time, it is like as a simplified brain to make inference; it is called "neuron-computer". No instructions are considered in any neural network usually; however, to complete complex processing on restricted computing resources, the processing must be reduced to primitive actions. Therefore, we introduce the instructions to the neuron-computer, in which the most important function is implications. There is an implication represented by binary-operators, but general implications for multi-value or fuzzy logics can't be done. Therefore, we need to use Lukasiewicz' operator at least. We investigated a neuron-computer having instructions for general implications. If we use the computer, the effective inferences base on multi-value logic is executed rapidly in a small logical unit.

  • PDF