• Title/Summary/Keyword: simple waves

Search Result 278, Processing Time 0.021 seconds

ACE and WIND Observations of Torsional Alfven Waves in the Solar Wind

  • Marubashi, K.;Cho, K.S.;Park, Y.D.;Kim, Y.H.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.27.1-27.1
    • /
    • 2010
  • We examined variations of the solar wind magnetic fields which are characterized by smooth field rotations with time scales of 2-7 hours, and identified the existence of two classes of structures. One is a small-scale magnetic flux rope, and the other shows clear characteristics of Alfven waves. In this study, we attempted to clarify fundamental characteristics of the structure of the second class. We have found that the observed features are basically described by the cylindrical structure consisting of the uniform background field and the circular torsional wave field propagating along the background field. We performed the least-squares fitting analysis for the observed rotational variations with a simple model of the torsional Alfven wave as described above. The fitted results show satisfactory agreement with observations and thus allow us to determine the structure of the region occupied by the torsional Alfven wave. Furthermore, the examination of ACE and WIND observations reveals several cases in which two spacecrafts encountered the same structure at different position and different times. Comparison of such cases provides further evidence that the observed rotational field variations are due to the torsional Alfven waves, and not due to elliptically-polarized Alfven waves.

  • PDF

The Water Wave Scattering by the Marine Structure of Arbitrary Shape (임의 형태의 해양구조물에 의한 해수파의 산란)

  • 신승호;이중우
    • Journal of the Korean Institute of Navigation
    • /
    • v.17 no.1
    • /
    • pp.61-78
    • /
    • 1993
  • Large offshore structure are to be considered for oil storage facilities , marine terminals, power plants, offshore airports, industrial complexes and recreational facilities. Some of them have already been constructed. Some of the envisioned structures will be of the artificial-island type, in which the bulk of structures may act as significant barriers to normal waves and the prediction of the wave intensity will be of importance for design of structure. The present study deals wave scattering problem combining reflection and diffraction of waves due to the shape of the impermeable rigid upright structure, subject to the excitation of a plane simple harmonic wave coming from infinity. In this study, a finite difference technique for the numerical solution is applied to the boundary integral equation obtained for wave potential. The numerical solution is verified with the analytic solution. The model is applied to various structures, such as the detached breakwater (3L${\times}$0.1L), bird-type breakwater(318L${\times}$0.17L), cylinder-type and crescent -type structure (2.89L${\times}$0.6L, 0.8L${\times}$0.26L).The result are presented in wave height amplification factors and wave height diagram. Also, the amplification factors across the structure or 1 or 2 wavelengths away from the structure are compared with each given case. From the numerical simulation for the various boundary types of structure, we could figure out the transformation pattern of waves and predict the waves and predict the wave intensity in the vicinity of large artificial structures.

  • PDF

Analytical and higher order finite element hybrid approach for an efficient simulation of ultrasonic guided waves I: 2D-analysis

  • Vivar-Perez, Juan M.;Duczek, Sascha;Gabbert, Ulrich
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.587-614
    • /
    • 2014
  • In recent years the interest in online monitoring of lightweight structures with ultrasonic guided waves is steadily growing. Especially the aircraft industry is a driving force in the development of structural health monitoring (SHM) systems. In order to optimally design SHM systems powerful and efficient numerical simulation tools to predict the behaviour of ultrasonic elastic waves in thin-walled structures are required. It has been shown that in real industrial applications, such as airplane wings or fuselages, conventional linear and quadratic pure displacement finite elements commonly used to model ultrasonic elastic waves quickly reach their limits. The required mesh density, to obtain good quality solutions, results in enormous computational costs when solving the wave propagation problem in the time domain. To resolve this problem different possibilities are available. Analytical methods and higher order finite element method approaches (HO-FEM), like p-FEM, spectral elements, spectral analysis and isogeometric analysis, are among them. Although analytical approaches offer fast and accurate results, they are limited to rather simple geometries. On the other hand, the application of higher order finite element schemes is a computationally demanding task. The drawbacks of both methods can be circumvented if regions of complex geometry are modelled using a HO-FEM approach while the response of the remaining structure is computed utilizing an analytical approach. The objective of the paper is to present an efficient method to couple different HO-FEM schemes with an analytical description of an undisturbed region. Using this hybrid formulation the numerical effort can be drastically reduced. The functionality of the proposed scheme is demonstrated by studying the propagation of ultrasonic guided waves in plates, excited by a piezoelectric patch actuator. The actuator is modelled utilizing higher order coupled field finite elements, whereas the homogenous, isotropic plate is described analytically. The results of this "semi-analytical" approach highlight the opportunities to reduce the numerical effort if closed-form solutions are partially available.

Barefoot walking improves cognitive ability in adolescents

  • Taehun Kim;Dae Yun Seo;Jun Hyun Bae; Jin Han
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.4
    • /
    • pp.295-302
    • /
    • 2024
  • Walking can have a positive impact on cognitive function in adolescents. This study aimed to compare the effects of walking with sneakers and barefoot on cognitive ability in adolescents. Fifty-nine adolescent male students were included in the study and assigned to the control (n = 20), sneaker (n = 19), and barefoot (n = 20) groups. The barefoot and sneakers group performed a 40-min walking exercise four times a week for 12 weeks during the morning physical activity time, while the control group performed self-study. Electroencephalogram (EEG) and brain activity variables were measured before and after the exercise program. The results showed that after 12 weeks, the barefoot group had a significant decrease in Gamma and H-beta waves and a significant increase in sensorimotor rhythm (SMR) and Alpha waves. Conversely, the control group showed a significant decrease in SMR waves and increase in Theta waves. The sneaker group showed a significant decrease in SMR waves alone. In an eyes-open resting state, the barefoot group showed a significant increase in H-beta, M-beta, SMR, and Alpha waves. The barefoot group also had a significant increase in cognitive speed and concentration and a significant decrease in brain stress. Taken together, barefoot walking can effectively enhance cognitive ability in adolescents, as demonstrated by the significant variation in EEG activity. This research highlights the potential benefits of barefoot walking as a simple and effective form of exercise for enhancing cognitive function in adolescents.

Lowering Simulation using Floating Crane in Waves (파랑 중 해상 크레인의 하강 작업 수치 시뮬레이션)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Byoung-Wan;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • A coupled analysis of a floating crane barge with a crane wire and hanging structure is carried out in thetime domain. The motion analysis of the crane barge is based on the floating multi-body dynamics, and thecrane wire is modeled as a simple spring tension. The hanging structure is assumed to be a rigid body with 3 degree-of-freedom translational motion. In this study, numerical simulations were conducted at three different stages. First, the developed code was validated by comparing the time-domain motion response of a crane barge with the frequency-domain results. Then, a coupled analysis of a crane barge and simple structure hanging by the crane wire was performed using the present scheme. The motion response and wire tension from the present calculations are compared with the results of OrcaFlex. The agreement between the two sets of results isfairly good. Last, lowering simulations in regular and irregular waves were conducted considering buoyancy changes in the hanging structure. The effects of the wave conditions, structure's weight, wire length, and lowering speed on the wire tension are considered.

Experiment Research of Autonomous Driving Valve for Pulse Detonation Rocket Engine

  • Matsuoka, Ken;Yamaguchi, Hiroyuki;Nemoto, Toyoshi;Yageta, Jun;Kasahara, Jiro;Yajima, Takashi;Kojima, Takayuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.419-426
    • /
    • 2008
  • As pulse detonation engine(PDE) does not need compression mechanisms such as compressors because self-sustained detonation waves are able to compress propellant gases by their incident shock waves, the PDE can have a simple straight-tube structure. In this study, we propose an autonomous driving valve system of the PDE, which fill premixed gases into the PDE tubes at high frequency with high mass flow rate. The proposed valve is composed of only three parts: a piston, a cylinder, and a spring. This valve system can produce intermittent flow at high mass flow rate, and also can keep stable reciprocal motion by using the propellant-gas enthalpy. When the cylinder content product is assumed to be constant, experimental results of the mass flow rate were approximately equal to the calculation model. We confirmed the autonomous driving valve performance by experiments, and concluded that this extremely simple valve with no electrical power and controller can be used as the PDE propellant supply system.

  • PDF

Computational and Experimental Studies on Added Resistance of AFRAMAX-Class Tankers in Head Seas (선수파 중 AFRAMAX급 유조선의 부가저항에 대한 실험과 수치계산)

  • Oh, Seunghoon;Yang, Jinho;Park, Sang-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.6
    • /
    • pp.471-477
    • /
    • 2015
  • When a ship sails in a seaway, the resistance on a ship increases due to incident waves and winds. The magnitude of added resistance amounts to about 15–30% of a calm-water resistance. An accurate prediction of added resistance in waves, therefore, is essential to evaluate the performance of a ship in a real sea state and to design an optimum hull form from the viewpoint of the International Maritime Organization (IMO) regulations such as Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI). The present study considers added resistance problem of AFRAMAX-class tankers with the conventional bow and Ax-bow shapes. Added resistance due to waves is successfully calculated using 1) a three-dimensional time-domain seakeeping computations based on a Rankine panel method (three-dimensional panel) and 2) a commercial CFD program (STAR-CCM+). In the hydrodynamic computations of a three-dimensional panel method, geometric nonlinearity is accounted for in Froude-Krylov and restoring forces using simple wave corrections over exact wet hull surface of the tankers. Furthermore, a CFD program is applied by performing fully nonlinear computation without using an analytical formula for added resistance or empirical values for the viscous effect. Numerical computations are validated through four degree-of-freedom model-scale seakeeping experiments in regular head waves at the deep towing tank of Hyundai Heavy Industries.

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na, Young-Nam;Jurng, Mun-Sub;Taebo Shim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3E
    • /
    • pp.9-20
    • /
    • 1999
  • To investigate the characteristics of internal waves (IWs) and their effects on acoustic wave propagation, a series of sea experiment were performed in the east coast of Donghae city, Korea in 1997 and 1998 where the water depth varies between 130 and 140 m. Thermistor strings were deployed to measure water temperatures simultaneously at 9 depths. CW source signals with the frequencies of 250,670 and 1000 Hz were received by an array of 15 hydrophones. Through the Wavelet transform analysis, the IWs are characterized as having typical periods of 2-17 min and duration of 1-2 hours. The IWs exist in a group of periods rather than in one period. Underwater acoustic signals also show obvious energy peaks in the periods of less than 12 min. Consistency in the periods of the two physical processes implies that acoustic waves react to the IWs through some mechanisms like mode interference and travel time fluctuation. Based on the thermistor string data, mode arriving structures are analyzed. As thermocline depth varies with time, it may cause travel time difference as much as 4-10 ms between mode 1 and 2 over 10 km range. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additional spatial variation of IWs. Model simulations with all modes and simple IWs show clear responses of acoustic signals to the IWs, i.e., fluctuations of amplitude and phase.

  • PDF

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

An Experimental Study on the Characteristics of the Impulsive Wave Discharged from the Open End of a Bend Pipe (곡관출구로부터 방출되는 펄스파의 특성에 관한 실험적 연구)

  • 이동훈;김희동;뢰척구준명
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.406-413
    • /
    • 2001
  • The current study depicts and experimental work of the impulsive wave discharged from the exit of several kinds of right-angle bend pipes, which are attached to the open end of a simple shock tube. The weak normal shock wave with Mach number from 1.02 to 1.20 is employed to obtain the impulsive wave propagating outside the exit of the pipe bends. The experimental data of the magnitude of the impulsive wave and its propagation directivity are analyzed to characterize the impulsive waves discharged from the right-angle bend pipes and compared with those from a straight pipe. The impulsive waves are visualized by a Schlieren optical system. A computation work using the two-dimensional, unsteady, compressible Euler equation is also carried out to represent the experimented impulsive waves. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulsive wave and its directivity toward to the pipe axis, compared with the straight pipe. It is believed that the right angle miter bend pipe can play a role of passive control agianst the impulsive wave.

  • PDF