• Title/Summary/Keyword: simple waves

Search Result 278, Processing Time 0.034 seconds

A Simple Method for Conducting Angle Calculation of Switch Devices in Cascaded Inverters Using Step Pulse Waves (스텝 펄스파를 사용하는 캐스케이드 인버터에서 스위치의 간단한 도통각 계산법)

  • Kim H.C.;Kim T.J.;Kang D.W.;Hyun D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.588-592
    • /
    • 2003
  • In recent years, the multilevel inverter synthesizing the output voltage with step pulse has been widely used as a solution for high power and high voltage applications. This paper proposes a simple method to obtain the conducting . angle. It is calculated by using voltage-second areas of the divided reference voltage according to the output voltage levels and these areas have influence on output step pulse waves. It is possible to reduce an amount of calculation because it is not required to solve the simultaneous equations by an iterative method. Also, the proposed method can get the conducting angle by means of on line.

  • PDF

Parametric roll of container ships in head waves

  • Moideen, Hisham;Falzarano, Jeffrey M.;Sharma, S.Abhilash
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-255
    • /
    • 2012
  • Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behaviour of the time-varying restoring arm or metacentric height. This assumption enables modelling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modelling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.

Leaky-waves of Metal-strip Gratings on Optical Planar Dielectric slabs

  • Ho, Kwang-Chun;Kim, June-Hwan;Kim, Yung-Kwon
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.359-362
    • /
    • 1998
  • The electromagnetic properties of leaky-waves guided by metal-strip grating configurations can be phrased in rigorous modal theory. Such a modal solution expressed by simple electrical transmissionline networks is utilized to analyze the leakage and filtering characteristics of metal-strip gratings. In particular, the modal transmission-line theory can serve as a template for computational algorithms that systematically evaluate the radiation effects that are not readily obtained by other methods.

  • PDF

Interference of Acoustic Signals Due to Internal Waves in Shallow Water

  • Na Young-Nam
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.189-197
    • /
    • 1999
  • To investigate internal waves (IW) effect on acoustic wave propagation, m analysis is conducted on mode travel time and model simulation. Based on the thermistor string data, it can be shown that the thermocline depth variation may cause travel time difference as much as 4-10 ms between mode 1 and 2 over range 10 km. This travel time difference causes interference among modes and thus fluctuation from range-independent stratified ocean structure. In real situations, however, there exist additionally spatial variation of IW. Model simulation with all modes and simple IW shows clear responses of acoustic signals to IW, amplitude and phase fluctuation.

  • PDF

Wave Climate at Hong-do and Mara-do Sea Areas (홍도와 마라도 해역에서의 파후에 대하여)

  • Kim Do Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.2
    • /
    • pp.71-81
    • /
    • 1998
  • In this paper the statistical characteristics of the waves at Hong-do and Mara-do are examined. The wane scatter diagrams of H/sub s/ and T/sub z/ and H/sub 1/3/and T/sub 1/3/ at two locations are given and various statistical characteristics of the ocean waves are examined. If the sea is not narrowband, the modified Rayleigh distribution introduced by Longuet-Higgins can be used for the individual wave height distribution. However the modified Rayleigh distribution has not been widely used due to the inconvenience of determining the empirical constant. In this paper a simple method to determine the empirical constant for the modified Rayleigh distribution is proposed. Extreme waves based on the measured wave data are estimated. There is no significant difference depending on the distribution functions. However the estimations of the extreme waves from H/sub s/ and H/sub 1/3/ show considerable difference.

  • PDF

Measurement of Elastic Constants by Simultaneously Sensing Longitudinal and Shear Waves as an Overlapped Signal

  • Seo, Hogeon;Song, Dong-Gi;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.138-148
    • /
    • 2016
  • Measurement of elastic constants is crucial for engineering aspects of predicting the behavior of materials under load as well as structural health monitoring of material degradation. Ultrasonic velocity measurement for material properties has been broadly used as a nondestructive evaluation method for material characterization. In particular, pulse-echo method has been extensively utilized as it is not only simple but also effective when only one side of the inspected objects is accessible. However, the conventional technique in this approach measures longitudinal and shear waves individually to obtain their velocities. This produces a set of two data for each measurement. This paper proposes a simultaneous sensing system of longitudinal waves and shear waves for elastic constant measurement. The proposed system senses both these waves simultaneously as a single overlapped signal, which is then analyzed to calculate both the ultrasonic velocities for obtaining elastic constants. Therefore, this system requires just half the number of data to obtain elastic constants compared to the conventional individual measurement. The results of the proposed simultaneous measurement had smaller standard deviations than those in the individual measurement. These results validate that the proposed approach improves the efficiency and reliability of ultrasonic elastic constant measurement by reducing the complexity of the measurement system, its operating procedures, and the number of data.

Multi-resolution bolt preload monitoring based on the acoustoelastic effect of ultrasonic guided waves

  • Fu, Ruili;Mao, Ruiwei;Yuan, Bo;Chen, Dongdong;Huo, Linsheng
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.513-520
    • /
    • 2022
  • During the long-time service of a bolt, its preload may suffer slight perturbations or significant reductions. It is a dilemma to monitor preload changes at high resolution and full scale. Approaches for bolt preload monitoring with multi-resolution should be developed. In this paper, a simple and effective multi-resolution bolt preload monitoring approach using ultrasonic guided waves (UGW) is proposed. A linear relationship between the time-of-flight (TOF) variation of multi-reflected waves and preload is derived to theoretically reveal the multi-resolution properties of UGW. The variations of TOF before and after the slight preload perturbations are extracted by using a global evaluation method. Experimental results show that the signal-to-noise ratio (SNR) of the 1st, 2nd, and 3rd-reflected UGWs is larger than 20 dB. The resolution of the 2nd-reflected UGW is higher than that of the 1st-reflected UGW and lower than that of the 3rd-reflected UGW. The ultimate detectable resolutions of bolt preload (DRBP) of the 1st and 3th-reflected UGWs are 0.9% and 0.5%, respectively. By using the 1st and 3th-reflected guided waves, the bolt looseness with different degrees can be monitored simultaneously.

A Proposal of Quasi Static Seismic Force for Arches subjected to both the Horizontal and Vertical Seismic Wave (수평.상하 지진을 받는 아치구조물에 대한 등가정적지진력 제안)

  • Jung, Chan-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.103-110
    • /
    • 2007
  • Only horizontal seismic waves are often applied as designed load to a rectangular rigid frame because the influence of vertical seismic waves is considered small so as to be able to ignore it. But, as for the seismic responses of shell and spatial structures, the responses in the vortical direction is significantly amplified and the vertical responses are amplified even if they are subjected to the horizontal seismic wave only. And also, the horizontal and vertical seismic responses of shell and spatial structures are amplified by vortical seismic waves. An arch has been often used as the main structure component of the large spatial structures and is the mostly simple structure with the seismic response characteristics of the spatial structures. In this paper, for arches as a simple example of the shell and spatial structures, the dynamic characteristics, when the structures are subjected to the horizontal and vertical seismic wave at the same time, are studied, and the horizontal and vertical static seismic force, which have simple forms but hold the response characteristics of arches, are proposed.

  • PDF

A Study on the Aerodynamic Noise of a Supersonic Exhaust Nozzle of Slotted Tube (슬롯관형 초음속 배기노즐의 공력소음에 관한 연구)

  • Lee, Dong-Hoon;Seto, Kunisato
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.132-142
    • /
    • 2000
  • The objective of this study is to experimentally investigate the noise propagating characteristics, the noise reduction mechanism and the performance of a slotted tube attached at the exit plane of a circular convergent nozzle. The experiment is performed through the systematic change of the jet pressure ratio and the slot length under the condition of two kinds of open area ratios, 25% and 51%. The open area ratio calculated by the tube length equivalent for the slot length is defined as the ratio of the total slot area to the surface area of a slotted tube. The experimental results for the near and far field sound, the visualization of jet structures and the static pressure distributions in the jet passing through a slotted tube are presented and explained in comparison with those for a simple tube. The propagating characteristics of supersonic jet noises from the slotted tube is closely connected with the slot length rather than the open area ratio, and its propagating pattern is similar to the simple tube. It is shown that the slotted tube has a good performance to suppress the shock-associated noise as well as the turbulent mixing noise in the range of a limited jet pressure and slot dimension. The considerable suppression of the shock‘associated noise is mainly due to the pressure relief caused by the high-speed jets passing through the slots on the tube. Both the strength of shock waves and the interval between them in a jet plume are decreased by the pressure relief. Moreover, the pressure relief is divided into the gradual and the sudden relief depending upon the open area ratio of the slotted tube. Consequently, the shock waves in a jet plume are also changed by the type of pressure relief. The gradual pressure relief caused by the slotted tube with the open area ratio 25% generates the weak oblique shock waves. On the contrary, the weak normal shock waves appear due to the sudden pressure relief caused by the slotted tube with the open area ratio 51%.

An Improved Method for Fault Location based on Traveling Wave and Wavelet Transform in Overhead Transmission Lines

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.51-60
    • /
    • 2012
  • An improved method for detecting fault distance in overhead transmission lines is described in this paper. Based on single-ended measurement, propagation theory of traveling waves together with the wavelet transform technique is used. In estimating fault location, a simple, but fundamental method using the time difference between the two consecutive peaks of transient signals is considered; however, a new method to enhance measurement sensitivity and its accuracy is sought. The algorithm is developed based on the lattice diagram for traveling waves. Representing both the ground mode and alpha mode of traveling waves, in a lattice diagram, several relationships to enhance recognition rate or estimation accuracy for fault location can be found. For various cases with fault types, fault locations, and fault inception angles, fault resistances are examined using the proposed algorithm on a typical transmission line configuration. As a result, it is shown that the proposed system can be used effectively to detect fault distance.