• Title/Summary/Keyword: simple waves

Search Result 278, Processing Time 0.038 seconds

A Study on Digital Clothing Design by Characteristics of Ubiquitous Environment (유비쿼터스 환경 특성에 의한 디지털 의류 디자인에 관한 연구)

  • Kim, Ji-Eon
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.3 s.112
    • /
    • pp.23-36
    • /
    • 2007
  • It is important that ubiquitous technology changes paradigm of thought, not simple definition in the 21st digital era. Characteristics of ubiquitous computing are pervasive, disappearing, invisible, calm through environment. As IT Technology develops, designers, computer scientists, chemists, performance artists cooperate in order to find out the best way to make desirable digital clothing in the future, with the merit of each part. Digital clothing defines clothes of new generation equipped computer, digital installations. Digital clothing design demands intercept of electromagnetic waves, light-weight and esthetic appearance, for it is attached high-technology equipment near body. The purpose of this study is to analyze design features of digital clothing according to ubiquitous characteristics. The methods of this study are documentary research of previous study and case study. In the theoretical study, ubiquitous characteristics are function-intensive by convergence, interactivity, embedded mobility and human & emotion-oriented attributes. Based on ubiquitous characteristics, digital clothing design classified function-intensive design by convergence, design for Interactivity and multi-sensible & emotion-oriented design, because embedded mobility is a basic element of ubiquitous environment. The early days digital clothing design is function-intensive design, and have esthetic appearances and design for interactivity increasingly. Recently digital clothing design is expressed multi-sensible and emotion-oriented design.

Vibration Control Performance of a Two-way Tuned Liquid Mass Damper Using Real-time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법에 의한 양방향 TLMD의 진동제어 성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.485-495
    • /
    • 2008
  • An experimental real-time hybrid method, which implements the vibration control of a building structure with only a two-way TLMD, is proposed and verified through a shaking table test. The building structure is divided into the upper experimental TLMD and the lower numerical structural part. The shaking table vibrates the TLMD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and sinusoidal waves input at its base. The results show that the conventional method can be replaced by the proposed methodology with a simple installation and accuracy for evaluating the control performance of a TLMD.

A Study on the Impulse Wave Discharged from the Exit of a Right-Angle Pipe Bend (곡관출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Hur, S.C.;Kweon, Y.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.634-639
    • /
    • 2001
  • The current study addresses experimental and computational work of impulse wave discharged from the exit of two kinds of right-angle pipe bends, which are attached to the open end of a simple shock tube. The weak normal shock wave with its magnitude of Mach number from 1.02 to 1.20 is employed to obtain the impulse wave propagating outside the exit of the pipe bends. A Schlieren optical system visualizes the impulse wave discharged from the exit of the pipe bends at an instant. The experimental data of the magnitude of the impulse wave and its propagating directivity are analyzed to characterize the impulse waves discharged from the exit of the pipe bends and compared with those discharged from a straight pipe. Computational results well predict the experimented dynamic behaviors of the impulse wave. The results obtained show that a right-angle miter bend considerably reduces the magnitude of the impulse wave and its directivity toward to the pipe axis, compared with the straight pipe and right-angle smooth bend. It is believed that the right-angle miter bend pipe can playa role of a passive control against the impulse wave.

  • PDF

Study on Pressure Variation around an Open Cavity (공동 주위에서의 압력 변화에 대한 연구)

  • 허대녕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.843-846
    • /
    • 2004
  • Cavity tone is generated due to the feedback between flow and acoustic wave. It is recognized that the period is determined by the time required for the flow convection in one direction, the time required for the acoustic propagation in the other direction and the time for phase shift depending on the flows and mode. Most of the phenomena have been investigated by experiments and a simple but fundamental theory. But the cause of the phase shift and the correctness of the theory have not been clearly explained so far. In this paper, the phenomena are calculated numerically to obtain detail information of flow and acoustic wave to explain the mechanism including the phase. High order high resolution scheme of optimized high order compact is used to resolve the small acoustic quantities and large flow quantities at the same time. The data are reduced using cross correlation function in space and time and cross spectral density function which has phase information. Abrupt change in pressure near corner in cavity is observed and is relate to phase variation. The time required for the feedback between the flow and acoustic wave is calculated after the numerical simulation f3r various modes. The periods based on the time calculated using the above method and direct observation from the acoustic waves generated and propagated in the numerical simulation are compared. It is found that no phase shift is required if we examine the time required carefully. Rossiter's formula for the cavity tone used for quick estimation needs to be modified far some modes.

  • PDF

Propagation Characteristics of Compression Waves Reflected from the Open End of a Duct

  • Kim, Heuy-Dong;Lee, Dong-Hoon;H. Kashimura;T. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.718-725
    • /
    • 2003
  • The present study addresses the distortion of the compression wave reflected from an open end of a shock tube. An experiment is carried out using the simple shock tube with an open end Computational work is also performed to represent the experimented flows. The second-order Total Variation Diminishing scheme is employed to numerically solve the unsteady, axisy-mmetric, inviscid, compressible governing equations. Both the experimented and predicted results are in good agreement. The generation and development mechanisms of the compression wave, which Is reflected from the open end of the shock tube, are obtained in detail from the present computations. The effect of size of the baffle plate at the open-end that causes the reflection of the incident expansion wave is found negligible. A good correlation is obtained for transition of the reflected compression wave to a shock wave inside the tube. The present data show that for a given wave length of the incident expansion wave the transition of the reflected compression wave to a shock wave can be predicted with good accuracy.

Models and Charcteristics of Multipath Propagation on Mobile Radio in an Urban Area (도시내 이동무선에서의 다중파전파전파의 특성 및 모델에 관한 연구)

  • 하덕호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.4
    • /
    • pp.293-306
    • /
    • 1989
  • In this paper, the models and characteristics of multipath propagation in an urban environment are described. Three propagation models(a random model, a ray model and a method of estimating time delay is proposed based on the envelope correlation between two radio frequencies. It is shown on the basis of laboratory simulation and field tests that the simple two-ray model is an adequate model for the fundamental study of the multipath propagation characteristic of the mobile radiowave and the estimating time delays of multipath-propagated waves in an urban area.

  • PDF

An Isothermal Mganetohydrodynamic Code and Its Application to the Parker Instability

  • KIM JONGSOO;RYU DONGSU;JONES T. W.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.281-283
    • /
    • 2001
  • As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfven wave decay have shown that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.

  • PDF

Gravitational Instability of Rotating, Vertically-Stratified, Polytropic Disks

  • Kim, Jeong-Gyu;Kim, Woong-Tae;Hong, Seung-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.111.2-111.2
    • /
    • 2011
  • While many astrophysical disks are vertically stratified and obey a polytropic equation of state, most studies on gravitational instability (GI) of flattened systems consider isothermal, razor-thin disks by taking vertical averages of disk properties. We investigate local GI of rotating pressure-confined polytropic disks with resolved vertical stratification by performing linear stability analysis. We find that the GI of vertically-stratified disks is in general a combination of conventional razor-thin Jeans modes and incompressible modes. The incompressible modes that dominate in the limit of the maximal disk compression require surface distortion and are an unstable version of terrestrial water waves. Disks with a steeper equation of state are found to be more Jeans unstable because they tend to have a smaller vertical scale height as well as a steeper temperature gradient corresponding to lower pressure support. GI depends more sensitively on the vertical temperature than density distribution. The density-weighted, harmonic mean, rather than the simple mean, of the adiabatic sound speed well describes the dispersion relation of horizontal modes, and thus is appropriate in the expression for Toomre Q stability parameter of razor-thin disks. We generalize Q into vertically-stratified disks, and discuss astrophysical application of our work.

  • PDF

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 1 : 선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.32-40
    • /
    • 2012
  • For predicting eigenfrequency and initial growth rate of combustion instabilities in lean premixed gas turbine combustor, linear thermoacoustic analysis model was developed in the current paper. A model combustor was selected for the model validation, which has well-defined inlet and outlet conditions and a relatively simple geometry, compared to the combustor in the previous works. Analytical linear equations for thermoacoustic waves were derived for a given combustion system. It was found that the prediction results showed a good agreement with the measurements, even though there was underestimation for instability frequencies. This underestimation was more obvious for a longer flame (i.e. wider temperature distribution) than for a shorter flame.

Numerical wave interaction with tetrapods breakwater

  • Dentale, Fabio;Donnarumma, Giovanna;Carratelli, Eugenio Pugliese
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.800-812
    • /
    • 2014
  • The paper provides some results of a new procedure to analyze the hydrodynamic aspects of the interactions between maritime emerged breakwaters and waves by integrating CAD and CFD. The structure is modeled in the numerical domain by overlapping individual three-dimensional elements (Tetrapods), very much like the real world or physical laboratory testing. Flow of the fluid within the interstices among concrete blocks is evaluated by integrating the RANS equations. The aim is to investigate the reliability of this approach as a design tool. Therefore, for the results' validation, the numerical run-up and reflection effects on virtual breakwater were compared with some empirical formulae and some similar laboratory tests. Here are presented the results of a first simple validation procedure. The validation shows that, at present, this innovative approach can be used in the breakwater design phase for comparison between several design solutions with a significant minor cost.