• Title/Summary/Keyword: simple tests

Search Result 1,236, Processing Time 0.027 seconds

Correlation between the Oswestry Disability Index, Berg Balance Scale, and Kinematic Data during Gait Analysis in Elderly People with Chronic Back Pain (만성 허리 통증 노인의 오스웨스트리 장애지수, 버그 균형 척도, 보행 시 운동학적 움직임과의 상관관계)

  • Hwang, Young-In;Kim, Ki-Song
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • PURPOSE: Chronic low back pain is one of the main factors that affect the quality of life and cause problems of gait and balance in elderly people. This study investigated the correlation between the Oswestry disability index (ODI), Berg balance scale (BBS), and kinematic data measured while analyzing the gait of elderly people with chronic back pain. METHODS: A total of 29 subjects participated in this study. The ODI, BBS, and kinematic data of lower extremities were measured while walking. All data were analyzed using Pearson's correlation coefficients and the significance was measured at .05. RESULTS: ODI had a significant correlation with 1, 13, and 14 items of BBS (p < .05), and left hip external rotation and right ankle abduction respectively in the stance and swing phase of gait (p < .01). 13 items of BBS had a significant correlation with the right ankle abduction in the stance phase of gait (p < .01). In addition, 14 items of BBS had a significant correlation with right and left ankle abduction in the stance and swing phase of gait (p < .01). CONCLUSION: While attempting to predict chronic low back pain and balance issues, it may be useful to check the right ankle abduction in the stance and swing phase of gait. In the future, it would be helpful if some simple tests could be designed to assess balance in elderly people with chronic low back pain.

The Development of Computerized Sport-related Cognitive Test Battery to Measure Sport Intelligence, the Ability to Read the Game (게임을 읽는 머리, 스포츠지능을 측정하기 위한 컴퓨터 기반 스포츠 인지검사 프로그램 개발)

  • Park, Jin-Han;Woo, Min-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.19-29
    • /
    • 2021
  • High-performing athletes possess the ability to read the game, known as the "sports brain". However, a cognitive battery to measure such sports brain has not been developed yet. The purpose of the study, thus, is to develop a computerized cognitive test battery to measure athletes' cognitive function. Based on a systematic review, information processing speed, execution function, and spatial ability were selected as sports-related cognitive functions. Simple and choice response times test, trail-making test, Flanker test, and mental rotation task were developed. After providing manual and practice trials, main tests were executed and all primary variables were statistically processed and automatically saved. The test battery is expected to aid in the discovery and recruitment of athletes in the future after verifying the validity and reliability of this battery.

Low-Cost Flexible Strain Sensor Based on Thick CVD Graphene

  • Chen, Bailiang;Liu, Ying;Wang, Guishan;Cheng, Xianzhe;Liu, Guanjun;Qiu, Jing;Lv, Kehong
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850126.1-1850126.10
    • /
    • 2018
  • Flexible strain sensors, as the core member of the family of smart electronic devices, along with reasonable sensing range and sensitivity plus low cost, have rose a huge consumer market and also immense interests in fundamental studies and technological applications, especially in the field of biomimetic robots movement detection and human health condition monitoring. In this paper, we propose a new flexible strain sensor based on thick CVD graphene film and its low-cost fabrication strategy by using the commercial adhesive tape as flexible substrate. The tensile tests in a strain range of ~30% were implemented, and a gage factor of 30 was achieved under high strain condition. The optical microscopic observation with different strains showed the evolution of cracks in graphene film. Together with commonly used platelet overlap theory and percolation network theory for sensor resistance modeling, we established an overlap destructive resistance model to analyze the sensing mechanism of our devices, which fitted the experimental data very well. The finding of difference of fitting parameters in small and large strain ranges revealed the multiple stage feature of graphene crack evolution. The resistance fallback phenomenon due to the viscoelasticity of flexible substrate was analyzed. Our flexible strain sensor with low cost and simple fabrication process exhibits great potential for commercial applications.

The Study on the International Inclination of Policy Decision in Environmental Problem (정책결정의 환경문제와 국제적 성향에 관한 연구)

  • Kim, Kyung Woo
    • International Area Studies Review
    • /
    • v.15 no.3
    • /
    • pp.127-143
    • /
    • 2011
  • The purpose of this paper is to examine whether strategic decision-making processes are related to decision effectiveness, using a longitudinal field study design. We studied 120 decisions to determine if procedural rationality and political behavior influence decision success, controlling for the goodwill of the environment and decision implementation. Our results indicate that decision-making processes are indeed related to decision success. Results are discussed in terms of the importance of strategic choice in environmental organizations. these studies often provided simple fragments of empirical tests without a well developed theoretical framework. This study attempts to fill this gap by examining policy adoption, specifically by investigating influences on policy decision making across 120 nations using multiple-regression analysis. The greater the number of international NGOs in which a national governmental participates, the more the nation is apt to adopt international environmental policies to see how real affect.

One-pot Synthesis of Hydrous MnO2 Nanowires for Selective Oxidative Transformation of Furfuryl Alcohol (Furfuryl 알코올의 선택적 산화 전환에 대한 수화 이산화망간 나노와이어의 One-pot 합성)

  • Mobina, Irshad;Choi, Bong Gill;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.49-53
    • /
    • 2019
  • Hydrous $MnO_2$ nanowires were easily synthesized by an one-pot synthesis with a simple hydrothermal method. As prepared hydrous $MnO_2$ nanowires were characterized with scanning emission microscopy (SEM), transmit emission microscopy (TEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET). They showed a good catalytic activity with the suitable nano-size of 4-5 nm and morphology. The furfuryl alcohol was selected as a substrate and the reaction was carried out in a toluene solvent at $100^{\circ}C$ under the atmospheric pressure of oxygen. The hydrous $MnO_2$ nanowire catalyst exhibited an excellent yield of furfural with the first-rate selectivity and conversion. The catalytic performance during recycle tests was also carried out and the catalyst showed a good mechanical strength with a negligible loss in the activity over five reaction cycles.

Analyses of intermediate products during degradation of pyrene in soil by hemoglobin-catalyzed reaction

  • Keum, Haein;Kang, Guyoung
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.335-340
    • /
    • 2018
  • Hemoglobin (Hb) is a member of heme-protein that can perform catalytic non-specific chain reaction in the presence of hydrogen peroxide ($H_2O_2$). Catalytic ability of Hb to degrade pyrene was demonstrated using soil contaminated with $^{14}C$ pyrene and 10 mg pyrene /kg soil. The composition of soil was similar to previously used soil except that it had lower organic carbon content. Bench scale laboratory tests were conducted in the presence of buffer only, $H_2O_2$ only, or Hb with $H_2O_2$ for 24 h. After 24 h reaction, 0.1 and 1.3% of $^{14}C$ pyrene in contaminated soil were mineralized with $H_2O_2$ only or Hb plus $H_2O_2$. No mineralization to $^{14}CO_2$ was detected with buffer only. Approximately 12.2% of pyrene was degraded in the presence of $H_2O_2$ only while 44.0% of pyrene was degraded in the presence of Hb plus $H_2O_2$ during 24 h of catalytic reaction. When degradation intermediate products were examined, two chemicals were observed in the presence of $H_2O_2$ only while 25 chemicals were found in the presence of Hb plus $H_2O_2$. While most degradation products were simple hydrocarbons, four of the 27 chemicals had aromatic rings. However, none of these four chemicals was structurally related to pyrene. These results suggest that Hb catalytic system could be used to treat pyrene-contaminated soil as an efficient and speedy remediation technology. In addition, intermediate products generated by this system are not greatly affected by composition change in soil organic matter content.

Evaluation of marginal adaptation in three-unit frameworks fabricated with conventional and powder-free digital impression techniques

  • Kocaagaoglu, Hasan;Albayrak, Haydar;Sahin, Sezgi Cinel;Gurbulak, Aysegul Guleryuz
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.262-270
    • /
    • 2019
  • PURPOSE. The purpose of this in vitro study was to evaluate the marginal misfits of three-unit frameworks fabricated with conventional and digital impressions techniques. MATERIALS AND METHODS. Thirty brass canine and second premolar abutment preparations were fabricated by using a computer numerical control machine and were randomly divided into 3 groups (n=10) as follows: conventional impression group (Group Ci), Cerec Omnicam (Group Cdi), and 3shape TRIOS-3 (Group Tdi) digital impression groups. The laser-sintered metal frameworks were designed and fabricated with conventional and digital impressions. The marginal adaptation was assessed with a stereomicroscope at ${\times}30$ magnification. The data were analyzed with 1-way analysis of variances (ANOVAs) and the independent simple t tests. RESULTS. A statistically significant difference was found between the frameworks fabricated by conventional methods and those fabricated by digital impression methods. Multiple comparison results revealed that the frameworks in Group Ci (average, $98.8{\pm}16.43{\mu}m$; canine, $93.59{\pm}16.82{\mu}m$; premolar, $104.10{\pm}15.02{\mu}m$) had larger marginal misfit values than those in Group Cdi (average, $63.78{\pm}14.05{\mu}m$; canine, $62.73{\pm}13.71{\mu}m$; premolar, $64.84{\pm}15.06{\mu}m$) and Group Tdi (average, $65.14{\pm}18.05{\mu}m$; canine, $70.64{\pm}19.02{\mu}m$; premolar, $59.64{\pm}16.10{\mu}m$) (P=.000 for average; P=.001 for canine; P<.001 for premolar). No statistical difference was found between the marginal misfits of canine and premolar abutment teeth within the same groups (P>.05). CONCLUSION. The three-unit frameworks fabricated with digital impression techniques showed better marginal fit compared to conventional impression techniques. All marginal misfit values were clinically acceptable.

Development of a drift-flux model based core thermal-hydraulics code for efficient high-fidelity multiphysics calculation

  • Lee, Jaejin;Facchini, Alberto;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1487-1503
    • /
    • 2019
  • The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.

Rotor Coastdown and Acceleration Performances of High-speed Motors Supported on Ball Bearings and Gas Foil Bearings (볼 베어링 및 가스 포일 베어링으로 지지되는 고속 전동기의 회전체 관성정지 및 가속 성능 연구)

  • Mun, HyeongWook;Seo, JungHwa;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.123-131
    • /
    • 2019
  • This study characterizes the coastdown performances of two small electric motors supported on high-speed ball bearings (BBs) and gas foil bearings (GFBs), and it predicts their acceleration performances. The two motors have identical permanent magnetic rotors and mating stators. However, the shaft of the GFBs has a larger mass and polar/transverse moments of inertia than that of the BBs. Motor coastdown tests demonstrate that the rotor speed decreases linearly with the BBs and nonlinearly with the GFBs. A simple model for the BBs predicts a constant drag torque and linear decay of speed with time. The test data validate the model predictions. For the GFBs, the hydrodynamic lubrication model predictions reveal that the drag torque increases linearly with speed, and the speed decreases exponentially with time. The predictions agree very well with the test data in the speed range of 100-30 krpm. The boundary lubrication model predicts a constant drag torque and linear decay of speed with time. The predictions agree well with the test data below 15 krpm. Mixed lubrication occurs in the speed range of 30-15 krpm. Rotor acceleration performances are predicted based on the characteristics of deceleration performances. The GFBs require more time to reach 100,000 krpm than the BBs because of their larger shaft polar moment of inertia. However, predictions for the assumed identical polar moment of inertia reveal that the GFBs have a nearly identical acceleration performance to that of the BBs with a motor torque greater than $0.03N{\cdot}m$.

Vibrational Characteristics of High-Speed Motors with Ball Bearings and Gas Foil Bearings Supports (볼 베어링 및 가스 포일 베어링으로 지지되는 소형 고속 전동기의 진동 특성)

  • Seo, Jung Hwa;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.114-122
    • /
    • 2019
  • High-speed rotating machinery requires low cost and reliable bearing elements with low friction, stable rotordynamic characteristics, and a simple design. This study experimentally evaluates the effects of bearing-support elements on the vibrational characteristics of a small-sized, high-speed permanent magnetic motor. A series of coast down tests from 100 krpm characterize the vibrational behaviors, rotor displacement, and housing acceleration of motors supported by ball bearings, ball bearings with a metal mesh damper, and gas foil bearings, respectively. Two eddy-current sensors installed in the horizontal and vertical directions measure the displacement of the rotor at its front nut, and a 3-axis accelerometer attached to the motor housing measures the housing acceleration. The test results reveal that synchronous (1X) vibration components most significantly affect the rotor displacement and housing acceleration, independent of the bearing-support elements. The motor supported by the deep-groove ball bearings results in the largest rotor vibrations increasing with speed; this is due to the absence of a damping mechanism. Additionally, the metal mesh damper effectively reduces the rotor displacement, housing acceleration, and sound-pressure level in the high-speed region (i.e., above 40 krpm), thus implying its substantial damping performance when installed on the outer race of the ball bearing. Lastly, the gas foil bearing supported motor yields the smallest rotor displacement, housing acceleration, and lowest sound-pressure level because of its hydrodynamic airborne operation, which does not require rolling elements that may cause mechanical friction and vibrations.