• 제목/요약/키워드: similitude-scaling relationship

검색결과 3건 처리시간 0.023초

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

반밀폐형 공간에서 비등온 고농도 연무의 배연산출량 산정을 위한 Froude 상사연구 (The Froude Scaling Study on the Ventilation of Non-isothermal Concentrated Fume from the Semi-closed Space)

  • 장혁상;최병일;박재철;김명배
    • 대한환경공학회지
    • /
    • 제27권8호
    • /
    • pp.877-885
    • /
    • 2005
  • 반 밀폐형 공간에서 발생되는 비등온 고농도의 연무를 제거하기 위해 필요한 배연량 산정을 위한 실형과 모형사이의 Froude 상사연구를 시행하였다. Zukoski의 연무상승 방정식을 기반으로 하는 무차원 상사방정식을 구성한 다음 체적 $1\;m^3(1\;m\;{\times}\;1\;m\;{\times}\;1\;m)$인 모형 A와 체적 $0.125\;m^3(0.5\;m\;{\times}\;0.5\;m\;{\times}\;0.5\;m)$인 모형 B를 사용하여 기하학적 상사성에 따른 파라메터인 무차원 에너지방출량과 무차원 질량유량과의 상관관계를 실험적으로 평가하였다. 실험적 결과는 고농도 배연에 관련하며 구성된 이론적 상사가 타당함을 보여주었고 본 연구에서 구성된 이론적 방정식이 범용으로 적용될 수 있음을 보여 주었다. 본 연구의 실험조건에서 제어공간에 투입된 최대 에너지량은 $20\;kW/m^3$이며 이 범위 이하의 열량 투입조건에서 배연량 대비 에너지 투입양 간의 상사가 잘 이루어졌다. 연구 범위의 에너지 투입조건에서 열적영향에 의한 필요 배연량의 증가는 단순한 양론적 추정 배연량에 비해 20-30% 추가되는 것으로 나타났다. 본 연구 자료를 바탕으로 고농도 비등온 조건에서 열부력 및 확산효과에 의해 이탈되는 제어대상 연무를 효율적으로 제어하기 위한 국소배기시스템의 설계 개선을 가져 올 수 있다.

Optimization of mix design of micro-concrete for shaking table test

  • Zhou, Ji;Gao, Xin;Liu, Chaofeng
    • Advances in concrete construction
    • /
    • 제13권3호
    • /
    • pp.215-221
    • /
    • 2022
  • Considering their similar mass densities, an attempt was made to optimize the mix design of micro-concrete that used barite sand as an aggregate by substituting marble powder (5%, 10%, 20%, 30%, 40%, 50%, 70%), clay brick powder (30%, 50%, 70%), and fly ash (30%, 50%, 70%) for the concrete (by mass) to form specimens for shaking table tests. The test results showed that for these three groups of materials, the substitutions had little effect on the density. The barite sand played a decisive role in the density, and the overall density of the specimens reached approximately 2.9 g/cm3. The compressive strength and elastic modulus decreased with an increase in the substitution rates for the three types of materials. Among them, the 28 day compressive strength values of the 40% and 50% marble powder groups were 11.73 MPa and 8.33 MPa, respectively, which were 58.7% and 70.7% lower than the control group, respectively. Their elastic modulus values were 1.33×104 MPa and 1.42×104 MPa, respectively, which were 39.1% and 35% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% clay brick powder groups were 13.13 MPa and 5.8 MPa, respectively, which were 53.8% and 79.6% lower than the control group, respectively. Their elastic modulus values were 1.54×104 MPa and 1.19×104 MPa, respectively, which were 29.7% and 45.4% lower than those of the control group, respectively. The 28 day compressive strength values of the 50% and 70% fly ash groups were 13.5 MPa and 7.1 MPa, respectively, which were 52.5% and 75% lower than those of the control group, respectively. Their elastic modulus values were 1.36×104 MPa and 0.95×104 MPa, respectively, which were 37.9% and 56.6% lower than those of the control group, respectively. There was a linear relationship between the 28 day compressive strength and elastic modulus, with the correlation coefficient reaching a value higher than 0.88. The test results showed that the model materials met the high density, low compressive strength, and low elastic modulus requirements for shaking table tests, and the test data of the three groups of different alternative materials were compared and analyzed to provide references and assistance for relevant model testers.