Journal of information and communication convergence engineering
/
v.16
no.4
/
pp.228-234
/
2018
In software development, the quality of a product often depends on whether its developers can rapidly find and contribute to the proper tasks. Currently, the word data of projects to which newcomers have previously contributed are mainly utilized to find appropriate source files in an ongoing project. However, because of the vocabulary gap between software projects, the accuracy of source file identification based on information retrieval is not guaranteed. In this paper, we propose a novel source file identification method to reduce the vocabulary gap between software projects. The proposed method employs DBPedia Spotlight to identify proper source files based on semantic similarity between source files of software projects. In an experiment based on the Spring Framework project, we evaluate the accuracy of the proposed method in the identification of contributable source files. The experimental results show that the proposed approach can achieve better accuracy than the existing method based on comparison of word vocabularies.
Journal of information and communication convergence engineering
/
v.20
no.3
/
pp.195-203
/
2022
Noise generated during image acquisition and transmission can negatively impact the results of image processing applications, and noise removal is typically a part of image preprocessing. Denoising techniques combined with nonlocal techniques have received significant attention in recent years, owing to the development of sophisticated hardware and image processing algorithms, much attention has been paid to; however, this approach is relatively poor for edge preservation of fine image details. To address this limitation, the current study combined a steering kernel technique with adaptive masks that can adjust the size according to the noise intensity of an image. The algorithm sets the steering weight based on a similarity comparison, allowing it to respond to edge components more effectively. The proposed algorithm was compared with existing denoising algorithms using quantitative evaluation and enlarged images. The proposed algorithm exhibited good general denoising performance and better performance in edge area processing than existing non-local techniques.
The similarity of the software is extracted by the verification of comparing with the source code. The source code is the intellectual copyright of the developer written in the programming language. And the source code written in text format contains the contents of the developer's expertise and ideas. The verification for judging the illegal use of software copyright is performed by comparing the structure and contents of files with the source code of the original and the illegal copy. However, there is hard to do the one-to-one comparison in practice. Cause the suspected source code do not submitted Intentionally or unconsciously. It is now increasing practically. In this case, the comparative evaluation with execution code should be performed, and indirect methods such as reverse assembling method, reverse engineering technique, and sequence analysis of function execution are applied. In this paper, we analyzed the effectiveness of indirect comparison results by practical evaluation . It also proposes a method to utilize to the system and executable code files as a verification results.
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
/
v.3
no.3
/
pp.158-164
/
1998
We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.
Journal of the Korea Society of Computer and Information
/
v.27
no.12
/
pp.59-68
/
2022
This paper presents a method for 1:1 verification by comparing the similarity between the given real product image and the drawing image. The proposed method combines two existing CNN-based deep learning models to construct a Siamese Network. After extracting the feature vector of the image through the FC (Fully Connected) Layer of each network and comparing the similarity, if the real product image and the drawing image (front view, left and right side view, top view, etc) are the same product, the similarity is set to 1 for learning and, if it is a different product, the similarity is set to 0. The test (inference) model is a deep learning model that queries the real product image and the drawing image in pairs to determine whether the pair is the same product or not. In the proposed model, through a comparison of the similarity between the real product image and the drawing image, if the similarity is greater than or equal to a threshold value (Threshold: 0.5), it is determined that the product is the same, and if it is less than or equal to, it is determined that the product is a different product. The proposed model showed an accuracy of about 71.8% for a query to a product (positive: positive) with the same drawing as the real product, and an accuracy of about 83.1% for a query to a different product (positive: negative). In the future, we plan to conduct a study to improve the matching accuracy between the real product image and the drawing image by combining the parameter optimization study with the proposed model and adding processes such as data purification.
Pseudomonas sp. strain SY5 is a PCB-degrading bacterium [24] that includes two different enzymes (BphC1 and BphC2) encoding 2,3-dihdroxybiphenyl 1,2-dioxygenase and BphD encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. The bphC1 and bphC2 genes were found to consist of 897 based encoding 299 amino acids and 882 bases encoding 294 amino acids, respectively, whereas the bphD gene consisted of 861 bases encoding 287 amino acids. According to a homology search, a 50% and 39% similarity between the bphC1 and bphC2 genes at the nucleotide and amino acid level was shown, respectively. The bphC1 gene showed a 38% and 45% similarity at the amino acid level to Alcaligenes eutrophus A5 and Rhodococcus rhodochrous, respectively, whereas, bphC2 showed a 95% and 43% similarity, respectively. A comparison of the deduced amino acid sequence of the bphD product of Pseudomonas sp. SY5 with that of A. eutrophus A5, Pseudomons sp. KKS102, and LB400 showed a sequence identity of 92, 92, and 79%, respectively. Strain SY5 was originally isolated from municipal sewage containing recalcitrant organic compounds an found to have a high degradability of various aromatic compounds [23]. The current study found that strain SY5 had two extradiol-type dioxygenases, which did not hybridize with each other as they had a low similarity, yet a similar structure of evolutionarily conserved amino acids residues for catalytic activity between BphC1 and BphC2 was observed.
The mean and Clustering are important methods of data mining, which is now widely applied to various multi-attributes problem However, feature weighting and feature selection are important in those methods bemuse features may differ in importance and such differences need to be considered in data mining with various multiful-attributes problem. In addition, in the event of arithmetic mean, which is inadequate to figure out the most fitted result for structure of evaluation with attributes that there are weighted and ranked. Moreover, it is hard to catch hold of a specific character for assume the form of user's group. In this paper. we propose a dispersion mean algorithm for evaluation of similarity measure based on the geometrical figure. In addition, it is applied to mean classified by user's group. One of the key issues to be considered in evaluation of the similarity measure is how to achieve objectiveness that it is not change over an item ranking in evaluation process.
One-dimensional time-series data have been studied in various database applications such as data mining and data warehousing. However, in the current complex business environment, multidimensional data sequences (MDS') become increasingly important in addition to one-dimensional time-series data. For example, a video stream can be modeled as an MDS in the multidimensional space with respect to color and texture attributes. In this paper, we propose the effective similarity measures on which the similar pattern retrieval is based. An MDS is partitioned into segments, each of which is represented by various geometric and semantic features. The similarity measures are defined on the basis of these segments. Using the measures, irrelevant segments are pruned from a database with respect to a given query. Both data sequences and query sequences are partitioned into segments, and the query processing is based upon the comparison of the features between data and query segments, instead of scanning all data elements of entire sequences.
Similarity has been considered as one of basic concepts of cognitive psychology which is useful for explaining cognitive structure and process. MDS models(Shepard, 1964; Nosofsky, 1991) and Contrast model(Tversky, 1977) were proposed as early models of similarity comparison process. But, there have been a lot of theoretical doubts about the conceptual validity of similarity as a result of empirical findings which could not be explained by early models. Goldstone(1994) assumed that similarity could be defined by alignment processes, and suggested structural alignment as a prospective alternative for solving conceptual controversies so far. In this study, basic assumption and algorithms of MDS models(Shepard, 1944; Nosofsky, 1991) and Contrast model(Tversky, 1977) were described shortly and some theoretical limitations such as arbitrariness of selective attention and correlated structures were discussed as well. The conceptual characteristics and algorithms of SIAM(Goldstone, 1994) were described and how it has been applied to cognitive psychology areas such as categorization, conceptual combination, and analogical reasoning were reviewed. Finally, some theoretical limitations related with data-driven processing and alternative processing and possible directions for structural alignment were discussed.
KIPS Transactions on Software and Data Engineering
/
v.6
no.11
/
pp.507-520
/
2017
The set-based similar sequence matching method measures similarity not for an individual data item but for a set grouping multiple data items. In the method, the similarity of two sets is represented as the size of intersection between them. However, there is a critical performances issue for the method in twofold: 1) calculating intersection size is a time consuming process, and 2) the number of set pairs that should be calculated the intersection size is quite large. In this paper, we propose an index-based search method for improving performance of set-based similar sequence matching in order to solve these performance issues. Our method consists of two parts. In the first part, we convert the set similarity problem into the intersection size comparison problem, and then, provide an index structure that accelerates the intersection size calculation. Second, we propose an efficient set-based similar sequence matching method which exploits the proposed index structure. Through experiments, we show that the proposed method reduces the execution time by 30 to 50 times then the existing methods. We also show that the proposed method has scalability since the performance gap becomes larger as the number of data sequences increases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.