In this study, we propose a method to improve the accuracy of acoustic odometry using optimal frame interval selection for Fourier-based image registration. The accuracy of acoustic odometry is related to the phase correlation result of image pairs obtained from the forward-looking sonar (FLS). Phase correlation failure is caused by spurious peaks and high-similarity image pairs that can be prevented by optimal frame interval selection. We proposed a method of selecting the optimal frame interval by analyzing the factors affecting phase correlation. Acoustic odometry error was reduced by selecting the optimal frame interval. The proposed method was verified using field data.
본 논문은 유사 아동 그림 선별 알고리즘 생성을 위한 Triplet Loss 기반 딥러닝 모델설계를 목적으로 한다. 아동 그림들 사이 유사성 측정을 위해서는 동일 클래스에 속하는 그림 간 특징 벡터의 거리는 가까워야 하고 다른 클래스 간 특징 벡터의 거리는 멀어져야 한다. 따라서, 본 연구에서는 클래스 수가 많아지는 경우에 이미지 유사성 측정에 이점을 지닌 Triplet Loss와 잔여 네트워크(ResNet)를 결합한 딥러닝 모델을 구축하여 유사 아동 그림 선별 알고리즘을 생성하였다. 결론적으로 본 모델을 활용한 유사 아동 그림 선별 알고리즘을 통해 대상 아동 그림과 다른 그림 간의 유사성을 측정하고 유사성이 높은 그림을 선별할 수 있다.
기존의 예제기반 초해상도 복원은 다수의 외부영상을 이용한 사전 생성 방법과 단일 영상을 이용한 자기참조 예제기반 복원 방법이 있지만, 입력영상의 특성과 패치사전에 따라 복원 성능이 저하되는 문제점이 있다. 이러한 문제점을 개선하기 위해서, 본 논문에서는 멀티 프레임의 움직임 정보를 이용하여 적응적 패치 선택을 통한 초해상도 영상복원 방법을 제안한다. 제안하는 초해상도 영상 복원 방법은 3가지 단계로 구성된다. i) 인접한 프레임간의 움직임 정보를 이용한 로컬 영역을 정의, ii) 단계적 열화를 이용한 적응적 패치 검색 방법, iii) 최적의 패치검색을 통한 패치 결합 및 초고해상도 영상복원이다. 결과적으로 제안하는 방법은 인접한 프레임간의 움직임 정보와 단계적 열화를 이용하여 패치를 검색함으로써 패치 검색의 정확성을 높여주고, 동영상에서 부자연스러운 현상이 제거된 초해상도 영상 복원이 가능하다. 실험결과에서는 기존의 초해상도 영상복원 방법과 비교할 때 복원 부작용이 감소되어 자연스럽게 복원된 영상을 제공하는 동시에, peak-to-peak signal noise ratio (PSNR)과 structural similarity measure (SSIM)를 사용한 객관적 성능 향상을 보인다.
This paper addresses the estimation of the shift vector from aerial image sequences. The conventional feature-based and area-based matching methods are simulated for determining the suitable image registration scheme. Computer simulations show that the feature-based matching schemes based on the co-occurrence matrix, autoregressive model, and edge information do not give a reliable matching for aerial image sequences which do not have a suitable statistical model or significant features. In area-based matching methods we try various similarity functions for a matching measure and discuss the factors determining the matching accuracy. To reduce the estimation error of the shift vector we propose the reference window selection scheme. We also discuss the performance of the proposed algorithm based on the simulation results.
Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권8호
/
pp.3295-3311
/
2020
With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.
영상간의 유사도는 일반적으로 영상으로부터 추출한 특징벡터간의 벡터공간상의 거리를 계산해서 판단한다. 그러나 이러한 특징벡터가 유사도 계산을 위한 하나의 방법이지만 항상 인간의 유사도 개념을 충실히 반영하지는 않는다. 그러므로 현존하는 대부분의 영상검색시스템들은 각 특징간의 중요도를 선정하여 유사도에 반영하는 방법을 사용하고 있다. 본 논문에서는 영상검색을 위한 새로운 초기 가중치 설정과 갱신 알고리즘을 제안한다. 이를 위해서 먼저 데이터 베이스 영상을 인간의 인지도 판단에 의해 그룹화 한 후, 내부질의와 외부질의를 수행하고, 검색된 영상중 유사한 영상이 어느 그룹에 속하는지 알아내어 각 영상별로 유사도 계산에 필요한 최적 특징 가중치를 계산한다. 2000개의 영상 데이타에 대한 실험을 통해서 제안된 알고리즘의 우수성을 보인다.
본 논문에서는 비디오 시퀸스의 공간적인 유사성을 이용한 웨이브렛 기반의 압축과 복원 알고리즘을 제안한다. 제안한 알고리즘은 인간의 시각 체계를 이용함으로써 영상의 화질을 보증하는 반면에 낮은 비트율과 더 빠른 실행 시간을 제공한다. 먼저, 각 비디오 시퀸스는 이산 웨이브렛 변환의 다해상도 분석에 의해 다양한 해상도를 갖는 부영상의 계층적 구조로 분해된다. 이 분해대역에서 영상의 가장 중요한 정보를 포함하는 저주파 부대역으로부터 두 개의 이웃한 프레임간의 유사성을 얻으며 그런 유사성의 결과로 움직임 정보를 추출하였다. 4개의 영역 설정 필터는 유사성의 결과에 따라 설계되어 졌고 압축은 고주파 부대역의 보존영역과 대치영역의 계수를 부호화함으로써 수행된다. 영역 설정 필터는 유사성의 결과를 기본으로 한 보존영역과 대치영역의 고주파 부대역으로 분류하고 대치영역의 계수들은 기준 프레임과 연속적인 프레임들 사이의 블록 기반 유사성에 따라 기준프레임의 계수로 대치되어지거나 0으로 제거된다. 부호화는 보존영역과 대치영역으로 분리하여 웨이브렛 계수들을 양자화하고 산술부호화함으로써 수행된다. 또한 제안한 알고리즘은 만약 프레임간의 유사성 결과를 곡선으로 그렸을 때 움직임이 없어졌다가 다시 나타나는 순간의 오목한 패턴 즉, 유사성 곡선의 최하점에서 기준 프레임 설정을 새롭게 갱신하게 된다. 시뮬레이션 결과. 제안한 알고리즘은 적절한 화질을 유지하면서 높은 압축률을 제공하는 것을 보였다 또한 시각적인 영상의 화질, 압축률, 실행시간에서 기존의 Milton의 알고리즘에 비해 보다 효율적인 결과를 보였으며 352${\times}$240 크기의 표준적인 비디오 영상의 결과, 전체적으로 0.2bpp 이하의 압축률. 32dB의 PSNR, 그리고 약 10ms의 실행시간을 보였다.
In this paper, we propose an automatic hierarchical organ segmentation method on abdominal CT images. First, similar atlases are selected using bone-based similarity registration and similarity of liver, kidney, and pancreas area. Second, each abdominal organ is roughly segmented using image-based similarity registration and intensity-based locally weighted voting. Finally, the segmented abdominal organ is refined using mask-based affine registration and intensity-based locally weighted voting. Especially, gallbladder and pancreas are hierarchically refined using location information of neighbor organs such as liver, left kidney and spleen. Our method was tested on a dataset of 12 portal-venous phase CT data. The average DSC of total organs was $90.47{\pm}1.70%$. Our method can be used for patient-specific abdominal organ segmentation for rehearsal of laparoscopic surgery.
영상분할은 관심대상이 되는 물체의 영역을 추출하기 위한 객체기반 영상분류의 전처리과정으로서 원격 탐사 영상분석에서 그 중요성 날로 커지고 있다. 본 연구에서는 고해상도 위성영상의 분광 및 공간정보를 반영할 수 있는 새로운 분할방법을 제안한다. 이를 위해 우선 다중분광 에지정보의 지역적 변이특성을 이용하여 영상에서 자동으로 초기시드 점을 추출하였다. 추출된 시드 점과 이웃하는 점들과의 유사성을 기반으로 영역 확장의 우선순위를 결정하는 MSRG가법을 이용하여 영상분할을 수행하였다. 제안된 기법의 효율성을 평가하기 위해 기존에 위성영상분할에 많이 사용된 유역분할법과 영역성장기법과의 시각적/정량적 비교평가를 수행하였다. 정량적 비교평가 방법으로는 무감독 영상분할 평가 측정치와 동일한 조건하에서 수행된 객체기반 분류 정확도를 이용하였다. 실험 결과 제안한 기법은 고해상도 위성영상의 객체기반분석에 유용하게 적용될 수 있으리라 판단된다.
The extraction of lip region is essential to Lip Reading, which is a field of image processing to get some meaningful information by the analysis of lip movement from human face image. Many conventional methods to extract lip region are proposed. One is getting the position of lip by using geometric face structure. The other discriminates lip and skin regions by using color information only. The former is more complex than the latter, however it can analyze black and white image also. The latter is very simple compared to the former, however it is very difficult to discriminate lip and skin regions because of close similarity between these two regions. And also, the accuracy is relatively low compared to the former. Conventional analysis of color coordinate systems are mostly based on specific extraction scheme for lip regions rather than coordinate system itself. In this paper, the method for selection of effective color coordinate system and chromaticity transformation to discriminate these two lip and skin region are proposed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.