• Title/Summary/Keyword: similarity based image selection

Search Result 25, Processing Time 0.025 seconds

A Study on Acoustic Odometry Estimation based on the Image Similarity using Forward-looking Sonar (이미지 쌍의 유사도를 고려한 Acoustic Odometry 정확도 향상 연구)

  • Eunchul Yoon;Byeongjin Kim;Hangil Joe
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.313-319
    • /
    • 2023
  • In this study, we propose a method to improve the accuracy of acoustic odometry using optimal frame interval selection for Fourier-based image registration. The accuracy of acoustic odometry is related to the phase correlation result of image pairs obtained from the forward-looking sonar (FLS). Phase correlation failure is caused by spurious peaks and high-similarity image pairs that can be prevented by optimal frame interval selection. We proposed a method of selecting the optimal frame interval by analyzing the factors affecting phase correlation. Acoustic odometry error was reduced by selecting the optimal frame interval. The proposed method was verified using field data.

A deep learning model based on triplet losses for a similar child drawing selection algorithm (Triplet Loss 기반 딥러닝 모델을 통한 유사 아동 그림 선별 알고리즘)

  • Moon, Jiyu;Kim, Min-Jong;Lee, Seong-Oak;Yu, Yonggyun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The goal of this paper is to create a deep learning model based on triplet loss for generating similar child drawing selection algorithms. To assess the similarity of children's drawings, the distance between feature vectors belonging to the same class should be close, and the distance between feature vectors belonging to different classes should be greater. Therefore, a similar child drawing selection algorithm was developed in this study by building a deep learning model combining Triplet Loss and residual network(ResNet), which has an advantage in measuring image similarity regardless of the number of classes. Finally, using this model's similar child drawing selection algorithm, the similarity between the target child drawing and the other drawings can be measured and drawings with a high similarity can be chosen.

UHD TV Image Enhancement using Multi-frame Example-based Super-resolution (멀티프레임 예제기반 초해상도 영상복원을 이용한 UHD TV 영상 개선)

  • Jeong, Seokhwa;Yoon, Inhye;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.154-161
    • /
    • 2015
  • A novel multiframe super-resolution (SR) algorithm is presented to overcome the limitation of existing single-image SR algorithms using motion information from adjacent frames in a video. The proposed SR algorithm consists of three steps: i) definition of a local region using interframe motion vectors, ii) multiscale patch generation and adaptive selection of multiple optimum patches, and iii) combination of optimum patches for super-resolution. The proposed algorithm increases the accuracy of patch selection using motion information and multiscale patches. Experimental results show that the proposed algorithm performs better than existing patch-based SR algorithms in the sense of both subjective and objective measures including the peak signal-to-noise ratio (PSNR) and structural similarity measure (SSIM).

Image Registration of Aerial Image Sequences (연속 항공영상에서의 Image Registration)

  • 강민석;김준식;박래홍;이쾌희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.4
    • /
    • pp.48-57
    • /
    • 1992
  • This paper addresses the estimation of the shift vector from aerial image sequences. The conventional feature-based and area-based matching methods are simulated for determining the suitable image registration scheme. Computer simulations show that the feature-based matching schemes based on the co-occurrence matrix, autoregressive model, and edge information do not give a reliable matching for aerial image sequences which do not have a suitable statistical model or significant features. In area-based matching methods we try various similarity functions for a matching measure and discuss the factors determining the matching accuracy. To reduce the estimation error of the shift vector we propose the reference window selection scheme. We also discuss the performance of the proposed algorithm based on the simulation results.

  • PDF

Lossless Compression for Hyperspectral Images based on Adaptive Band Selection and Adaptive Predictor Selection

  • Zhu, Fuquan;Wang, Huajun;Yang, Liping;Li, Changguo;Wang, Sen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3295-3311
    • /
    • 2020
  • With the wide application of hyperspectral images, it becomes more and more important to compress hyperspectral images. Conventional recursive least squares (CRLS) algorithm has great potentiality in lossless compression for hyperspectral images. The prediction accuracy of CRLS is closely related to the correlations between the reference bands and the current band, and the similarity between pixels in prediction context. According to this characteristic, we present an improved CRLS with adaptive band selection and adaptive predictor selection (CRLS-ABS-APS). Firstly, a spectral vector correlation coefficient-based k-means clustering algorithm is employed to generate clustering map. Afterwards, an adaptive band selection strategy based on inter-spectral correlation coefficient is adopted to select the reference bands for each band. Then, an adaptive predictor selection strategy based on clustering map is adopted to select the optimal CRLS predictor for each pixel. In addition, a double snake scan mode is used to further improve the similarity of prediction context, and a recursive average estimation method is used to accelerate the local average calculation. Finally, the prediction residuals are entropy encoded by arithmetic encoder. Experiments on the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) 2006 data set show that the CRLS-ABS-APS achieves average bit rates of 3.28 bpp, 5.55 bpp and 2.39 bpp on the three subsets, respectively. The results indicate that the CRLS-ABS-APS effectively improves the compression effect with lower computation complexity, and outperforms to the current state-of-the-art methods.

Performance Improvement of Image Retrieval System by Presenting Query based on Human Perception (인간의 인지도에 근거한 질의를 통한 영상 검색의 성능 향상)

  • 유헌우;장동식;오근태
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.9 no.2
    • /
    • pp.158-165
    • /
    • 2003
  • Image similarity is often decided by computing the distance between two feature vectors. Unfortunately, the feature vector cannot always reflect the notion of similarity in human perception. Therefore, most current image retrieval systems use weights measuring the importance of each feature. In this paper new initial weight selection and update rules are proposed for image retrieval purpose. In order to obtain the purpose, database images are first divided into groups based on human perception and, inner and outer query are performed, and, then, optimal feature weights for each database images are computed through searching the group where the result images among retrieved images are belong. Experimental results on 2000 images show the performance of proposed algorithm.

Video Compression using Characteristics of Wavelet Coefficients (웨이브렛 계수의 특성을 이용한 비디오 영상 압축)

  • 문종현;방만원
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.45-54
    • /
    • 2002
  • This paper proposes a video compression algorithm using characteristics of wavelet coefficients. The proposed algorithm can provide lowed bit rate and faster running time while guaranteeing the reconstructed image qualify by the human virtual system. In this approach, each video sequence is decomposed into a pyramid structure of subimages with various resolution to use multiresolution capability of discrete wavelet transform. Then similarities between two neighboring frames are obtained from a low-frequency subband which Includes an important information of an image and motion informations are extracted from the similarity criteria. Four legion selection filters are designed according to the similarity criteria and compression processes are carried out by encoding the coefficients In preservation legions and replacement regions of high-frequency subbands. Region selection filters classify the high-frequency subbands Into preservation regions and replacement regions based on the similarity criteria and the coefficients In replacement regions are replaced by that of a reference frame or reduced to zero according to block-based similarities between a reference frame and successive frames. Encoding is carried out by quantizing and arithmetic encoding the wavelet coefficients in preservation regions and replacement regions separately. A reference frame is updated at the bottom point If the curve of similarity rates looks like concave pattern. Simulation results show that the proposed algorithm provides high compression ratio with proper Image quality. It also outperforms the previous Milton's algorithm in an Image quality, compression ratio and running time, leading to compression ratio less than 0.2bpp. PSNR of 32 dB and running tome of 10ms for a standard video image of size 352${\times}$240 pixels.

Hierarchical Organ Segmentation using Location Information based on Multi-atlas in Abdominal CT Images (복부 컴퓨터단층촬영 영상에서 다중 아틀라스 기반 위치적 정보를 사용한 계층적 장기 분할)

  • Kim, Hyeonjin;Kim, Hyeun A;Lee, Han Sang;Hong, Helen
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.12
    • /
    • pp.1960-1969
    • /
    • 2016
  • In this paper, we propose an automatic hierarchical organ segmentation method on abdominal CT images. First, similar atlases are selected using bone-based similarity registration and similarity of liver, kidney, and pancreas area. Second, each abdominal organ is roughly segmented using image-based similarity registration and intensity-based locally weighted voting. Finally, the segmented abdominal organ is refined using mask-based affine registration and intensity-based locally weighted voting. Especially, gallbladder and pancreas are hierarchically refined using location information of neighbor organs such as liver, left kidney and spleen. Our method was tested on a dataset of 12 portal-venous phase CT data. The average DSC of total organs was $90.47{\pm}1.70%$. Our method can be used for patient-specific abdominal organ segmentation for rehearsal of laparoscopic surgery.

Development and Evaluation of Image Segmentation Technique for Object-based Analysis of High Resolution Satellite Image (고해상도 위성영상의 객체기반 분석을 위한 영상 분할 기법 개발 및 평가)

  • Byun, Young-Gi;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.627-636
    • /
    • 2010
  • Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation to consider spectral and spatial information of high resolution satellite image. Firstly, the initial seeds were automatically selected using local variation of multi-spectral edge information. After automatic selection of significant seeds, a segmentation was achieved by applying MSRG which determines the priority of region growing using information drawn from similarity between the extracted each seed and its neighboring points. In order to evaluate the performance of the proposed method, the results obtained using the proposed method were compared with the results obtained using conventional region growing and watershed method. The quantitative comparison was done using the unsupervised objective evaluation method and the object-based classification result. Experimental results demonstrated that the proposed method has good potential for application in the object-based analysis of high resolution satellite images.

Extraction of Lip Region using Chromaticity Transformation and Fuzzy Clustering (색도 변환과 퍼지 클러스터링을 이용한 입술영역 추출)

  • Kim, Jeong Yeop
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.806-817
    • /
    • 2014
  • The extraction of lip region is essential to Lip Reading, which is a field of image processing to get some meaningful information by the analysis of lip movement from human face image. Many conventional methods to extract lip region are proposed. One is getting the position of lip by using geometric face structure. The other discriminates lip and skin regions by using color information only. The former is more complex than the latter, however it can analyze black and white image also. The latter is very simple compared to the former, however it is very difficult to discriminate lip and skin regions because of close similarity between these two regions. And also, the accuracy is relatively low compared to the former. Conventional analysis of color coordinate systems are mostly based on specific extraction scheme for lip regions rather than coordinate system itself. In this paper, the method for selection of effective color coordinate system and chromaticity transformation to discriminate these two lip and skin region are proposed.